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Experimental observations and linear stability calculations are presented for the 
stability of torsional flows of viscoelastic fluids between two parallel coaxial disks, one 
of which is held stationary while the other is rotated at a constant angular velocity. 
Beyond a critical value of the dimensionless rotation rate, or Deborah number, the 
purely circumferential, viscometric base flow becomes unstable with respect to a non- 
axisymmetric, time-dependent motion consisting of spiral vortices which travel radially 
outwards across the disks. Video-imaging measurements in two highly elastic 
polyisobutylene solutions are used to determine the radial wavelength, wavespeed and 
azimuthal structure of the spiral disturbance. The spatial characteristics of this purely 
elastic instability scale with the rotation rate and axial separation between the disks ; 
however, the observed spiral structure of the secondary motion is a sensitive function 
of the fluid rheology and the aspect ratio of the finite disks. 

Very near the centre of the disk the flow remains stable at all rotation rates, and the 
unsteady secondary motion is only observed in an annular region beyond a critical 
radius, denoted RT. The spiral vortices initially increase in intensity as they propagate 
radially outwards across the disk; however, at larger radii they are damped and the 
spiral structure disappears beyond a second critical radius, Rt . This restabilization of 
the base viscometric flow is described quantitatively by considering a viscoelastic 
constitutive equation that captures the nonlinear rheology of the polymeric test fluids 
in steady shearing flows. A radially localized, linear stability analysis of torsional 
motions between infinite parallel coaxial disks for this model predicts an instability to 
non-axisymmetric disturbances for a finite range of radii, which depends on the 
Deborah number and on the rheological parameters in the model. The most dangerous 
instability mode varies with the Deborah number; however, at low rotation rates the 
steady viscometric flow is stable to all localized disturbances, at any radial position. 

Experimental values for the wavespeed, wavelength and azimuthal structure of this 
flow instability are described well by the analysis; however, the critical radii calculated 
for growth of infinitesimal disturbances are smaller than the values obtained from 
experimental observations of secondary motions. Calculation of the time rate of 
change in the additional viscous energy created or dissipated by the disturbance shows 
that the mechanism of instability for both axisymmetric and non-axisymmetric 
perturbations is the same, and arises from a coupling between the kinematics of the 
steady curvilinear base flow and the polymeric stresses in the disturbance flow. For 
finitely extensible dumb-bells, the magnitude of this coupling is reduced and an 
additional dissipative contribution to the mechanical energy balance arises, so that the 
disturbance is damped at large radial positions where the mean shear rate is large. 

Hysteresis experiments demonstrate that the instability is subcritical in the rotation 
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rate, and, at long times, the initially well-defined spiral flow develops into a more 
complex three-dimensional aperiodic motion. Experimental observations indicate that 
this nonlinear evolution proceeds via a rapid splitting of the spiral vortices into vortices 
of approximately half the initial radial wavelength, and ultimately results in a state 
consisting of both inwardly and outwardly travelling spiral vortices with a range of 
radial wavenumbers. 

1. Introduction 
The torsional motion of a non-Newtonian fluid between coaxial parallel disks is one 

of the most common geometries employed in rheological measurements. Fluid samples 
are placed in a narrow gap of height H between two coaxial parallel disks of radius R, 
and measurements of the torque and normal force exerted by the fluid on the upper 
plate are used to calculate the shear-rate-dependent material functions of the fluid, as 
a steady or oscillatory shear flow is driven by rotating the other plate. A key 
assumption in the subsequent analysis of such measurements, however, is that the flow 
is always steady and purely azimuthal for all rotation rates. Centrifugal effects, which 
produce inertial secondary flows in such geometries, are usually negligible because of 
the high viscosities of most viscoelastic solutions and melts ; however, it has recently 
become clear that secondary flows can develop even in simple geometries at vanishingly 
small Reynolds number owing to purely elastic instabilities that are entirely absent in 
the corresponding flows of Newtonian liquids. Such instabilities have been documented 
in circular Couette flows and Taylor-Dean flows as well as in torsional flows between 
coaxial disks or between a cone-and-disk, and have recently been reviewed by Larson 
(1 992). Although the detailed mechanism and characteristic features of the elastic 
instability may vary in each geometry, the driving force in each case is the large 
difference between the extra normal stresses in the streamwise direction and the 
direction of shear. This first normal stress difference acts normal to the curvilinear 
streamlines in the flow and drives a secondary motion. In this paper we provide a 
detailed experimental and theoretical description of the critical conditions and the 
spatial form of the instability which develops in the torsional flow of highly elastic 
model fluids contained between two coaxial disks. 

Viscoelastic modifications to the steady, inertially driven, secondary recirculation 
that is present in confined rotating flows at finite Reynolds numbers have been known 
to exist since the early observations of Giesekus (1965) and Griffiths, Jones & Walters 
(1969). Detailed experimental and theoretical studies (Hill 1972; Chiao & Chang 1990) 
in rotational flows such as the disk-and-cylinder system with low geometric aspect 
ratios, ( R / H )  - 0(1), show that as the rotation rate increases and viscoelastic effects 
become increasingly important, the weak centrifugal outward motion near the rotating 
disk reverses direction and becomes directed radially inwards towards the centre of the 
disks. At still higher rotation rates, time-dependent unsteady motions are observed and 
calculated. 

However, in systems with higher aspect ratios, such secondary motions are typically 
negligible and the fluid motion is steady and one-dimensional. The first experimental 
indications of a purely elastic instability in the creeping torsional flow of a viscoelastic 
fluid were observed by Jackson, Walters & Williams (1984). Measurements of the 
torque and normal force exerted by a highly elastic polyacrylamide ‘Boger fluid’ 
(Boger 1977/78) at high shear rates in a parallel-plate rheometer showed a steady 
monotonic increase over a period of 20 min. This time-dependent response resulted in 
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an increase in the apparent viscosity and first normal stress coefficient calculated for the 
fluid sample, and was interpreted as a time-dependent shear-thickening or anti- 
thixotropic change associated with the microstructure of the fluid. Subsequent 
measurements by Magda & Larson (1988) with a number of different Boger fluids 
containing high molecular weight polystyrene (PS) or polyisobutylene (PIB) showed 
that the critical shear rate required for the onset of this apparent anti-thixotropic 
transition was not constant, but varied inversely with the separation H between the 
plates, and therefore corresponded to an approximately constant critical angular 
velocity This observation was found to be in good qualitative agreement with 
calculations performed by Phan-Thien (1 983) for the hydrodynamic stability of 
torsional motions of the upper-convected Maxwell and Oldroyd-B models. In this 
analysis, Phan-Thien used the von Karma, similarity forms for the velocity and stress 
fields which are valid when the disks are infinite in extent and examined the linear 
stability of the base rotational shear flow with respect to disturbances that can also be 
represented in similarity form. Infinitesimal perturbations were found to grow 
exponentially in time for values of the Deborah number, De = A, a, that exceeded the 
critical value given by Decrit = ~ [ ( l  -p)(5 -2p)]-k. In this expression, A, is the single 
relaxation time in the constitutive model and /l= v s / v o  is the dimensionless ratio of the 
solvent viscosity to the total viscosity in the Oldroyd-B model. Hence, the critical 
rotation rate QCrit for the onset of this secondary motion is predicted to be a function 
of the relaxation time and viscosity ratio of the fluid between the plates, but is 
independent of the gap H between the plates. 

Subsequent flow-visualization experiments with another PIB Boger fluid (McKinley 
et al. 1991a) showed that a number of the characteristics of this elastic instability 
cannot be described even qualitatively by the analysis of Phan-Thien. In particular, 
flow-visualization and dynamic measurements of the shear stress and normal stresses 
exerted on the plates clearly demonstrated that the flow transition is non-axisymmetric, 
overstable in time and corresponds to a subcritical bifurcation. Most importantly, the 
spatial structure of the developing secondary flow consists of a radially periodic 
structure that scales approximately with the gap H between the plates and not of a 
single toroidal vortex extending across the entire radial span of the disks, as is expected 
from perturbations of the similarity form considered by Phan-Thien. As the Deborah 
number was increased beyond a critical value, these vortices increased in intensity with 
time and propagated both radially outwards from the centre of the disks and inwards 
from the free surface at the outer edge of the test geometry. By constructing an 
experimental stability curve for a number of different aspect ratios R / H  and rotation 
rates, McKinley et al. (1991 a)  also showed that the instability is a function of both the 
rotation rate 0 and the characteristic shear rate j R  = Q R / H  between the plates. This 
latter variation was attributed to the complex shear-rate-dependence of the viscoelastic 
material functions of the test fluid studied. It is the quantitative description of this non- 
axisymmetric, time-dependent flow instability that is the focus of this paper. 

It is worth noting that highly elastic fluids, such as polymer melts, also can undergo 
another, entirely different, type of rotational flow instability known as edge fracture in 
a parallel-plate rheometer (Hutton 1969). Above a critical shear rate, a narrow concave 
indentation appears in the free surface of the fluid near the midplane between the two 
disks. This indentation rapidly propagates radially inwards in the form of a crack and 
the viscoelastic sample is torn into two halves, one attached to each plate. Tanner & 
Keentok (1983) conjectured that this instability is driven by the negative second normal 
stress difference N2 = (7zz - T ~ ~ )  measured in many polymeric systems. This observation 
has been verified recently by Lee, Tripp & Magda (1992), who showed that the critical 
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second normal stress difference Nzcrit  required for edge fracture in one particular cone- 
and-plate geometry remained almost constant for five different polymer solutions. 

Both the purely elastic instability discussed by McKinley et al. (1991a) and edge 
fracture can severely limit the operating range of rotational rheometers for polymeric 
fluids, and the particular ordering of the transitions depends on the relative magnitudes 
of the first and second normal stress coefficients and the surface tension for a given 
polymeric fluid. Dilute or weakly entangled polymer solutions, such as the Boger fluids 
used in our experiments, typically have vanishingly small second normal stress 
coefficients and are not prone to the edge-fracture instability. In their previous 
experiments, Lee et al. (1992) were not able to observe edge fracture in a polystyrene- 
based Boger fluid over a wide range of shear rates. 

Although inertial transitions and secondary motions in the flow of Newtonian 
liquids between co- and counter-rotating parallel disks have been the subject of 
extensive theoretical and experimental attention (see the recent review by Zandbergen 
& Dijkstra 1987), much less is known about the corresponding flow of viscoelastic 
fluids. Most of the theoretical analyses have only considered the existence and stability 
of secondary flows described by the von Karman similarity form first analysed by 
Phan-Thien (1983). Walsh (1987) employed a numerical scheme to show the presence 
of a subcritical bifurcation from the base torsional flow of an upper-convected 
Maxwell fluid at zero Reynolds number. Similar results showing turning points in 
dynamic quantities such as the total torque exerted on the plates and the presence of 
multiple axisymmetric steady-state solutions of similarity form have been found by Ji, 
Rajagopal & Szeri (1990) for the rotational flow of an Oldroyd-B fluid between infinite 
co-axial parallel plates at finite Reynolds numbers. Crewther, Huilgol & Jozsa (1991) 
give a detailed review and mathematical study of both axisymmetric and non- 
axisymmetric flows for the Oldroyd-B fluid and present examples of some of the 
hundreds of steady-state solutions they obtained using a bifurcation tracking scheme. 

The first analysis that considered disturbances not of the similarity form was 
presented by Oztekin & Brown (1993) for the inertialess torsional flow of the Oldroyd- 
B model between infinite parallel plates. These authors considered the linear stability 
of infinitesimal normal mode disturbances to the base velocity and stress fields of the 
form 

F(r, 8, z ,  t )  =f(z)  eiar+i7n8+rrt, 

where F indicates any dimensionless disturbance variable, and all kinematic variables 
have been non-dimensionalized with the lengthscale Hand the timescale W'. In (1) the 
dimensionless wavenumber a characterizes the radial form of disturbance, and m is an 
integer describing the azimuthal dependence of the disturbance. Non-axisymmetric 
instabilities are incorporated by choosing m -+ 0. The dimensionless growth rate of the 
disturbance is given by the complex growth rate n = n,+in,. By linearizing the 
resulting disturbance equations about a critical dimensionless radial location R*, the 
authors obtained a separable matrix eigenvalue problem which they solved to find the 
spatial form of the most unstable disturbance as a function of the local radial position 
R", the Deborah number, De, and the fluid rheology, as measured by the viscosity ratio 
/3. Calculations showed that the most dangerous perturbations led to spiral vortices 
with positive or negative angle that travelled either radially outwards or inwards, 
respectively. The critical rotation rate for growth of these disturbances and the 
azimuthal dependence of the most unstable mode were sensitive functions of the fluid 
rheology and the local radial position. Most significantly, these disturbances were 
unstable at large R* for Deborah numbers considerably below the critical condition 
predicted by the Phan-Thien analysis, and thus are more likely to be observed 
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experimentally. The critical radial wavenumber CL at the onset of the instability was 
in good agreement with the few photographs presented by McKinley et al., but 
quantitative comparison of the azimuthal structure and wavespeed were inhibited by 
the lack of data. In the current work, we report more extensive flow-visualization 
observations of the spatial and temporal form of the secondary flow between the plates 
which enable us to perform a critical comparison with the results of the linear stability 
analysis. 

The calculations of Oztekin & Brown were performed with the quasi-linear Oldroyd- 
B model which predicts a constant viscosity yo and a constant first normal stress 
coefficient !PI,, in steady torsional shear flows at all rotation rates. However, for Boger 
fluids such as those used in the experiments of Magda & Larson and McKinley et al., 
it is well known that although the shear viscosity is almost constant across many 
decades of shear rate, the first normal stress coefficient is only constant at low shear 
rates and decreases monotonically even at moderate shear rates (Prilutski et al. 1983; 
Quinzani et al. 1990). Despite this limitation, the predicted form of the neutral stability 
curve obtained by Oztekin & Brown for the critical onset radius as a function of the 
Deborah number adequately described the experimental measurements of McKinley et 
al. when the effective relaxation time A,(?) for the test fluid was evaluated using the 
viscometric properties measured at the shear rate corresponding to the maximum value 
of R* in the experimental apparatus, and this value was subsequently used as the single 
relaxation time in the Oldroyd-B model. 

Since it is the relative magnitude of the first normal stress coefficient !PI(?) compared 
to the shear viscosity which provides the driving force for these purely elastic 
instabilities, Larson (1 992) pointed out that shear-thinning phenomena may be 
expected to have profound stabilizing effects on the bifurcation structure and stability 
of highly elastic flows. McKinley et al. (1991 a) demonstrated that when the aspect ratio 
R / H  of the plates was increased at a fixed rotation rate, the increasing importance of 
shear-thinning effects led to a progressive decrease in the amplitude of the ultimate 
unstable flow developing between the plates. However, to date, few analytical studies 
of the stabilizing effects of shear-thinning on purely elastic instabilities have appeared, 
primarily because of the greatly increased complexity of the analysis which results. 
Phan-Thien (1985) briefly reported on a linear stability analysis for the inertialess 
torsional motion of a fluid described by the Phan-Thien-Tanner (PTT) constitutive 
equation between an infinite cone and disk, and showed that whereas the flow of an 
Oldroyd-B fluid was unstable beyond a critical rotation rate for a particular form of 
the disturbance kinematics, the corresponding motion of the PTT model was always 
stable at all Deborah numbers. Larson, Muller & Shaqfeh (1994) considered the effects 
of shear-thinning in the viscoelastic material functions, the presence of a Newtonian 
solvent contribution to the viscosity, and the effects of a distribution of relaxation times 
on the stability of Taylor-Couette flows to axisymmetric disturbances using the K- 
BKZ model (Bird, Armstrong & Hassager 1 9 8 7 ~ ) .  They showed that each of these 
effects increased the critical Deborah number for the onset of the purely elastic 
instability. Comparison with experimental observations gave reasonable agreement ; 
however, the experimentally determined critical conditions were consistently lower 
than experimental measurements, and it was speculated that the most likely reason for 
this discrepancy was that the most unstable disturbance is non-axisymmetric. In the 
current work, we demonstrate similar trends in the parallel-plate geometry and show 
that in order to even qualitatively describe the spatial form of the torsional elastic 
instability, it is necessary to incorporate both non-axisymmetric, time-dependent 
disturbances, as well as shear-rate-dependent fluid rheology. 
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The experimental apparatus, the rheology of the two test fluids and the form of the 
constitutive equation used to model the nonlinear viscometric functions are first 
described in $2. Video-imaging measurements of the spatial structure and evolution of 
the elastic instability that is observed as a function of Deborah number, aspect ratio 
and fluid rheology are presented in $3. The previous linear stability analysis for 
localized non-axisymmetric disturbances developed by Oztekin & Brown (1 993) is 
extended in $4 to incorporate the more realistic fluid constitutive equation. In addition, 
results are presented for an energy analysis for non-axisymmetric perturbations, 
similar to the approach initially developed by Joo & Shaqfeh (1991, 1992) for the 
Oldroyd-B model, to show that the instability develops owing to a coupling between 
the polymeric stresses in the base torsional flow and the perturbations in the local 
velocity field. Finally, a critical quantitative comparison of the observed and calculated 
secondary motions is presented in $5.  

2. Experimental 
2.1. Test apparatus 

All of the experimental measurements were conducted in the apparatus shown 
schematically in figure 1. A cylindrical coordinate system (f, 8 , i )  is defined with origin 
at the centre of the upper, rotating disk. Throughout the text we use the notation of 
Oztekin & Brown (1993) and choose the plate separation H ,  and the rotation rate Q 
to define characteristic lengthscales and timescales ; all variables are then dimensionless 
unless explicitly identified with carets. The base of the test cell consisted of a smooth, 
polished Plexiglas sheet supported by four threaded rods which could be independently 
adjusted to ensure that the Plexiglas sheet was parallel to the upper disk. The position 
of the upper disk was controlled using a two-axis lathe mount attached to the rigid 
frame of the geometry, and the separation of the upper disk and the bottom plate was 
measured to within f 1 pm using a digital micrometer. Special care was taken to ensure 
that the upper and lower disks were parallel to within f 12 pm. The radius of the upper 
disk was held constant at R = 40.0 mm, and gaps of H = 2.00 mm and H = 3.50 mm 
were used in the experiments. The choice of plate separations is experimentally 
constrained, since, for very small separations, it becomes difficult to resolve the spatial 
structure of the secondary flow that develops in the narrow gap; for very large plate 
separations, gravity overcomes the wetting forces which pin the fluid at the edge of the 
disks, and the sample runs out of the rheometer. 

Fluid samples were placed between the disk and the transparent lower plate, and 
excess fluid beyond the edge of the disk was carefully removed to leave a smooth, 
approximately cylindrical meniscus at the edge of the disks. According to the analysis 
of Olagunju (1994) and the material properties of the fluids given in $2.3, the maximum 
surface deflection is only expected to deviate by a maximum of & 0.10 mm from a right 
cylinder and inertial secondary flows of von Karma, form can be completely ignored. 
The steady torsional flow was driven by rotating the upper disk, which was attached 
to the spindle of a high-torque d.c. gearmotor (Electrocraft E586). The angular 
rotation rate Q of the motor was accurately measured by a tachometer and was 
incremented in small steps (typically Ss2 = 0.52 rad s-l), until the onset of the 
instability was observed. 

The flow was illuminated and visualized from a mirror placed below the Plexiglas 
base at an angle of 45". Two fibre-optic light sources were positioned to illuminate the 
entire region between the disk and the plate as uniformly as possible, and trace 
quantities of small plate-like mica particles (Kalliroscope Corp., Groton , MA) were 
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FIGURE 1 .  Schematic diagram of the parallel plate geometry. 
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FIGURE 1 .  Schematic diagram of the parallel plate geometry. 

uniformly dispersed into the test fluids in order the increase the visibility of the 
secondary flow. 

Images of the flow were recorded using a high-resolution monochrome CCD camera 
(COHU 4910) and a Super-VHS video recorder (Panasonic AG1960). Since the 
analogue gain of the CCD camera is linear, spatial and temporal variations in the 
intensity of the reflected light by the mica flakes are faithfully recorded as grey-scale 
variations in the video-images. In 52.2, we explain how these fluctuations can be used 
to calculate the wavelength and wavespeed of the elastic instability that develops above 
a critical rotation rate, or Deborah number. Individual images (480 x 480 pixels) of 
the entire cross-sectional area of the disk were digitized from each frame of the video- 
tape using an 8-bit frame-grabber (DIPIX P360), yielding a spatial resolution of - 0.18 mm pixel-'. Although flow cells can be readily distinguished visually in the fluid 
sample and also in the recorded images, a series of image-processing operations was 
subsequently performed to enhance the visibility of the cells. First, spatial non- 
uniformities in background light intensity were corrected for by a pixel-by-pixel 
division of grey-scale values using a prerecorded reference image of the steady flow, as 
suggested by Russ (1 992). The random high-frequency fluctuations in pixel intensity 
then were smoothed using a low-pass filter with a 5 pixel x 5 pixel kernel. Finally, the 
grey-scale histograms of the images were expanded by simultaneously adjusting the 
contrast and brightness in order to give the best visual definition of the cells. These 
processed images were analysed to determine the wavenumber, spiral number and 
wavespeed for each run as described below. 

2.2. Image analysis 
The video-imaging system has been used to make quantitative measurements of the 
spatial and temporal evolution of the secondary flow that develops in the fluid sample 
above a critical rotation rate. In order to compare our experimental observations with 
the results of the linear stability calculations, it is first necessary to understand the 
relationship between the dimensionless parameters a, m and CT describing the form of 
the normal mode perturbations considered in the numerical analysis and the 
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experimental quantities that are actually observable through the transparent base of 
the rheometer. In our experimental work we have used a classical flow-visualization 
technique (cf. Merzkirch 1987) based on the addition of anisotropic seeding particles 
to the viscoelastic test fluid which align with the local direction of the creeping flow 
between the plates. In a steady two-dimensional flow, the locally-averaged intensity of 
the reflected light is spatially uniform; however, following the onset of a hydrodynamic 
instability, spatial and/or temporal variations in the intensity of the reflected light at 
each point develop and can be used to infer the structure of the developing secondary 
flow. 

Since our observations are limited to two-dimensional images in the ( r ,  @-plane of 
the test cell, the intensity of the reflected light I(r, 8, t )  at any image coordinates ( r ,  8) 
fixed with respect to the centre of the stationary base represents an integrated average 
of the reflections from seed particles moving through that point but distributed over 
a range of depths z in the fluid. If the observed flow instability is of the normal mode 
form given by equation (l), then the grey-scale intensity of any pixel in the image 
obtained from the CCD array is expected to vary as 

I(r, 8, t )  K f(Z)eiar+ims+nt, 

where f(z) indicates an undetermined weighted z-average of the spatial form of the 
disturbance to the base flow. 

If a pixel is selected in a digitized, two-dimensional image with a maximum intensity 
I,,, and we attempt to track points of constant intensity across the image, then the 
locus of these points at any instant in time will be given by 

d I =  0 = iudr+imdO, 
or by integrating once as 

( 3 )  

where B0 sets the radial location Ro of the starting point with respect to the (arbitrary) 
definition of the line given by 8 = 0. 

The spatial locations of the recirculating vortices in the secondary flow given by (4) 
are thus described by Archimedean Spirals (Davis 1993) and the winding number of the 
spiral curves is given by m/a. The radial wavenumber u is only meaningfully defined 
for positive real numbers and azimuthal periodicity requires that m takes integer values 
only. If m > 0 then the curves spiral inwards towards the origin with increasing 8; if 
m < 0 then the curves spiral outwards. The local spiral angle 6 may be conveniently 
defined from (3) as 

-dr - + ( m / r )  
tan€ = __ - -, 

r d8 O1 
( 5 )  

and can be interpreted as the ratio of the azimuthal wavenumber (rnlr) at any given 
radius to the radial wavenumber u. 

Sample curves are illustrated in figure 2 for a fixed value of radial wavenumber 01 and 
increasing values of azimuthal wavenumber rn = 0 , l  and 2. In each case, the azimuthal 
coordinate 0 is defined from the abscissa y = 0 and increases in the clockwise direction. 
For non-axisymmetric disturbances (m > 0), note that although azimuthal periodicity 
at a fixed radius requires f(0) = f(0+2n), the locus of each line corresponding to the 
maximum intensity of a secondary vortex is given parametrically in terms of 0 < 0 < 
Ra/m. It also should be noted that by following the locus of a single spiral curve it is 
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@ 
FIGURE 2. Archimedean spirals of the form given by equation (4) : (a) axisymmetric mode, rn = 0; (b) 
non-axisymmetric mode, rn = 1 ; (c) nested non-axisymmetric spirals, rn = 2. The radial wavenumber 
a of the spiral is the same in each case. 

not possible to determine the values of m and CL unambiguously, but only the quotient 
m/a. The parameter m is determined independently, however, by noting that it 
indicates the integer number of intertwined, non-intersecting curves that cross a 
circumferential arc at every radius r .  

Video-imaging measurements of variations in the intensity of the reflected light are 
combined with these equations to determine the parameters describing the spatial form 
of the instability. The temporal evolution of the secondary flow is quantified by making 
a sequence of such observations at successive time intervals of 8 s. Profiles of grey-scale 
intensity as a function of radial position are presented in $3 and the peaks in the profile 
are identified as local maxima in the magnitude of the secondary flow. Profiles at a fixed 
azimuthal position for a sequence of elapsed times show that the instability consists of 
radially-periodic vortices which travel outwards across the disk. The radial 
wavenumber a can be calculated from either the Fourier spectrum of a single radial 
profile I(r),  or from the average of all observed peak-to-peak distances at different 
angular positions. The wavespeed, c = Im(cr)/a, of the secondary flow is determined 
by measuring the position of the centre of each vortex at successive time intervals. 
Linear regression using (4) of a series of radial intensity profiles at different azimuthal 
angles B in an image makes it possible to determine if the secondary flow is 
axisymmetric or three-dimensional. Information describing the temporal structure of 
the elastic instability at a single fixed point in space might be obtained from a time- 
series of LDV measurements (cf. McKinley et al. 1991 b ;  Muller, Shaqfeh & Larson 
1993); however, such observations fail to yield the global spatial form of the instability 
at any instant in time, so we have not pursued this approach here. 

2.3. Fluid rheology 

Two different Boger fluids have been used in these experiments in order to investigate 
the effects of variations in the fluid rheology on the flow instability. The first 
fluid, 0.31 wt% polyisobutylene (Exxon Vistanex L-120, MW - 1.8 x lo6 g mol-l), 
4.83 wt% tetradecane ((214) and 94.86 wt% polybutene (Amoco H100, 
MW - 900 g mol-l), is the same as used by McKinley et al. (1991 a). The second fluid 
consists of a lower concentration (0.20 wt %) of the identical polyisobutylene, 
dissolved in a more viscous solvent consisting of 3.80 wt % C14 and 96.00 wt% of 
another polybutene grade (Amoco H300, MW - 1300 g mol-l). The zero-shear-rate 
viscometric properties (yo, Yl,) and the associated model parameters for the Oldroyd-B 
constitutive equation for each of the two fluids are given in table 1. The lower 
concentration of identical molecular weight polymer in the 0.20 wt % Boger fluid 



FIGURE 3. Viscous and elastic material functions for the 0.2 wt % PIB fluid at 25 "C. Solid symbols 
are steady shear flow properties: 0,  viscosity 7 [Pa s]; ., first normal stress coefficient !PI [Pa s2]. 
Hollow symbols are linear viscoelastic properties: 0, dynamic viscosity 7' [Pa s] and u127" /w  [Pa s']. 
The predictions of the steady shear properties of a single-mode Chilcott-Rallison model with lo = 
48.1 Pa s, c = 0.20, A, = 1.24 s and L = 20 also are shown. 

0.31 % PIB/H100 0.20% PIB/H300 

70 [Pa SI 13.76 48.1 
7s [Pa SI 8.12 40.1 
ul,, [Pa s21 8.96 19.8 

0.'794 1.24 1' [sl 0.59 0.84 

TABLE 1. Visometric properties of the two polyisobutylene (PIB) test fluids used in the 
experimental observations of the torsional flow instability. 

results in a lower polymeric contribution to the total viscosity, and thus a higher value 
of the solvent viscosity ratio p = vs/qo.  For dilute, or semi-dilute solutions such as 
these Boger fluids, the longest relaxation time depends on the concentration and 
molecular weight of the polymeric solute, the polymer-solvent thermodynamic 
interactions and the viscosity of the solvent that the chains are dissolved in (Ferry 
1980). Since the same polyisobutylene is used in both fluids and the chemical 
composition of the surrounding solvent is essentially unchanged (in both cases the 
solvent is essentially athermal; Flory 1953), the lower concentration of the polymer in 
the 0.20wt % fluid is outweighed by the significantly higher solvent viscosity of the 
H300 polybutene, resulting in a larger first normal stress coefficient and a longer fluid 
relaxation time. The temperature dependence of the material properties of these fluids 
for 9 "C < T < 40 "C is described by an Arrhenius equation with flow activation 
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energies of AH = 61.2 kJ and 62.0 kJ, respectively. A change of 1 "C in the fluid 
temperature results in an 8 Yo change in the fluid viscosity and relaxation time, and it 
is therefore crucial to carefully monitor the ambient temperature and adjust the 
material functions appropriately. Experiments were conducted between 22 "C and 
26 "C, and we report critical conditions corrected to a reference temperature of 25 "C. 

The rheology of the 0.31 wt% fluid has been presented extensively elsewhere 
(Quinzani et al. 1990), therefore only the steady-shear rheology of the 0.20 wt % PIB 
fluid is presented in figure 3 .  The shear viscosity y of the solution is almost constant 
across four decades of shear rate owing to the high underlying viscosity of the 
Newtonian solvent. The first normal stress coefficient asymptotically approaches a 
constant value Yl,, at low shear rates, indicating quadratic growth of the first normal 
stress difference ; however, at intermediate shear rates, significant shear-thinning in 
Yl(v) becomes apparent. The complex plateau behaviour of Yl(v) is characteristic of 
almost all Boger fluids (Quinzani et al. 1990), but cannot be captured by the simple 
quasi-linear Oldroyd-B model which predicts a shear-rate-independent value of the 
first normal stress coefficient. The magnitude of the spatial gradients in the first normal 
stress difference plays a dominant role in the onset of purely elastic instabilities (Joo 
& Shaqfeh 1992; Oztekin & Brown 1993), and the shear-rate-dependence of !PI(?) may 
be expected to significantly affect the stability boundaries of the base rotational shear 
flow. In order to model this nonlinear fluid rheology we have selected the constitutive 
equation proposed by Chilcott & Rallison (1988) and the predictions of the model are 
also shown in figure 3 .  In this constitutive model, the PIB molecules are considered to 
be a dilute solution of non-interacting dumb-bells with dimensionless concentration c, 
dissolved in a Newtonian solvent of viscosity ys. The two beads of the dumb-bell are 
connected by a nonlinear elastic spring with a finite maximum extensibility L, which 
represents the ratio of the fully extended length of the dumb-bell to its r.m.s. length at 
equilibrium. By eliminating the second-rank tensor describing the configuration of the 
dumb-bells from the original equations of Chilcott & Rallison, the constitutive 
equation for the polymeric contribution to the stress g can be written simply as 

where A, is the single time constant in the model, f s  (L2 + (Al/yp) tr(g))/(L2 - 3 )  is a 
measure of the nonlinearity in the spring connecting the dumb-bells, and y p  is the 
polymeric contribution to the viscosity. The dimensional shear-rate tensor is given by 
+ = (Vfi)'+ Vfi. The solvent is Newtonian with constitutive equation +s = ys +, and the 
total stress tensor is given by the linear combination t = $s + s. 

In the limit L --f co, the dumb-bells become infinitely extensible and (6) simplifies to 
the upper-convected Maxwell model; the constitutive equation for the total stress 
tensor 4 is then equivalent to the Oldroyd-B model (Bird et al. 19873). However, for 
finite values of L, the model predicts the onset of shear-thinning in the first normal 
stress coefficient beyond dimensionless shear rates of A, v s L2/(8(L2 - 3));  with an 
asymptotic decrease at high shear rates which scales as !PI(?) - ?-I. The steady-shear 
viscosity of the model remains constant with a value yo = ys + v p  and the polymeric 
contribution to the viscosity depends on the concentration of dumb-bells as v p  = vs c. 
At high shear rates, the apparent relaxation time A,(?) = Y1(v)/2yp(v) of the model 
decreases monotonically from the value of 
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determined from the zero-shear-rate viscometric properties. In order to distinguish 
carefully between these two relaxation times, we define a Deborah number based on the 
zero-shear-rate relaxation time A, appearing in (6) as De, = A, 0, and a second, shear- 
rate-dependent quantity based on the local apparent shear rate as De(v) = A,(j)O. 

The dimensionless concentration c of the dumb-bells appearing in the model is 
determined directly from the measured zero-shear-rate viscosities and the solvent 
viscosities given in table 1. The single remaining model parameter L is determined 
independently by fitting the form of the shear-rate-dependent first normal stress 
coefficient at high shear rates. Since the same molecular weight PIB molecules are used 
in both fluids and the nature of the polymer-solvent interactions are almost 
unchanged, very similar values of the extensibility should describe both the 0.3 1 wt % 
and the 0.20 wt YO Boger fluids. By constraining the model to describe more closely the 
viscometric data at high shear rates of 2 10 s-l as shown in figure 3, the best estimate 
value of L = 20 is obtained for the 0.20 wt % PIB fluid. Previous work (McKinley, 
Armstrong & Brown 1993) used a value of L = 12 to model the shear-rate-dependence 
of the 0.31 wt% fluid. The slight discrepancies between these values of L can be 
attributed to intermolecular interactions between polymer chains which are neglected 
in the dilute-solution theory, but which may be significant in the semi-dilute Boger 
fluids. A more robust method of determining the extensibility would be via 
measurements of the extensional viscosity of each solution, if such data were available. 
In uniaxial elongation, the Chilcott-Rallison model predicts significant extensional 
thickening with an asymptotic extensional viscosity that scales as O(cL2). 

Like other dilute-solution dumb-bell models, the Chilcott-Rallison model predicts a 
zero value of the second normal stress coefficient Y2 at all shear rates. Although we 
have not determined Y2 for the two Boger fluids used in this study, measurements by 
Magda and coworkers for other PIB and PS-based Boger fluids indicate that, within 
experimental error, the second normal stress coefficient is indeed zero (Magda et al. 
1991 ; Lee et al. 1992). Non-zero negative values of Y2 are predicted to stabilize purely 
elastic instabilities in other curved geometries (Shaqfeh, Muller & Larson 1992), but 
induce edge-fracture instabilities in cone and plate and parallel-plate flows (Larson 
1992). Boger fluids are thus ideally suited for experimental studies of the elastic flow 
instability between parallel plates, in the absence of edge disturbances. 

The linear viscoelastic properties ( f ,  27”/0) of the 0.20 wt % fluid determined by 
small-amplitude oscillatory motions of the parallel disks also are shown in figure 3. The 
discrepancy between the experimental data and the predictions of the single-mode 
Chilcott-Rallison model, which reduces to the same form as the Oldroyd-B model in 
the limit of small strains, serves to emphasize that a spectrum of time constants is 
required for a quantitative description of the material properties of even simple ‘model 
systems’ such as Boger fluids in transient shear flows over a range of deformation 
(Bird et a1 1987~).  

Despite this shortcoming, this simple nonlinear constitutive model allows systematic 
evaluation of the effects of variations in the fluid rheology on the spatial form of the 
torsional flow instability. In their analysis of the purely elastic instability that arises in 
Taylor-Couette flows of the K-BKZ model, Larson et al. (1994) found that shear- 
thinning led to an increase in the critical Deborah number for the onset of the 
instability. Although the cellular form of the instability remained the same, the spatial 
wavenumber was observed to depend on the degree of shear-thinning. However, in the 
limit of very narrow gaps, the Taylor-Couette flow is homogeneous and the shear rate 
across the narrow annular gap of a circular Couette cell is constant; fluid elements at 
different radial locations therefore are described by the same material properties. In 
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contrast, the torsional motion between parallel disks considered in this work is an 
inhomogeneous shear flow, and the local shear rate increases linearly with radial 
position from zero at the centre to a maximum value j R  = Q R / H  at the edge of the 
disks. If a test fluid exhibits shear-thinning, then the viscoelastic material properties, 
and thus the local stability of the base flow, will vary radially across the disk even at 
a fixed rotation rate. 

The local ratio of the first normal stress difference to the shear stress at any radial 
position is defined as a stress ratio S, = U,(j) j /v (v) .  When the shear rate at the edge 
of the disks is taken as a characteristic deformation rate for the flow, this stress ratio 
is often referred to as a Weissenberg number (McKinley et al. 1991 a ;  Larson 1992). For 
the Oldroyd-B model the stress ratio increases radially outwards in a linear manner, 
and the previous linear stability analysis of Oztekin & Brown demonstrates that for all 
radial positions greater than a critical value the flow will be unstable to non- 
axisymmetric disturbances. As the rotation rate increases, the value of the stress ratio 
at any radial position increases, and the critical onset point of the instability shifts to 
smaller radial positions. However, if the viscosity and first normal stress coefficient are 
shear-rate-dependent, then the stress ratio no longer increases linearly across the disk. 
In fact, for the Chilcott-Rallison model considered in this work, it asymptotically 
approaches a constant value of (2(L2 - 3)); at large radii. This spatial variation in the 
gradients of the local stress ratio coupled with the curvature of the fluid streamlines is 
shown in $93 and 4 to result in a spatially localized unsteady flow that only extends 
across a finite annular region of the disks. 

3. Experimental results 
Experimental observations are presented which allow the determination of the 

spatial and temporal characteristics of the purely elastic torsional flow instability. The 
consequences of the flow instability on the total torque and thrust exerted by the fluid 
on the plate are demonstrated in 43.1, and the limitations of the data that can be 
obtained from such spatially-averaged measurements are summarized. A detailed 
analysis of the spatial and temporal evolution of the flow instability in the 0.31 wt% 
Boger fluid for a fixed geometric aspect ratio of R / H  = 20 is presented in $3.2, and the 
spiral parameters describing the local form of the non-axisymmetric disturbance are 
determined. The effects of changing fluid rheology and aspect ratio on the instability 
are shown in $3.3. Observations of a second flow transition that develops at later times 
from well-defined spiral vortices of a single spiral number to a complex nonlinear state 
composed of non-axisymmetric disturbances with a spectrum of radial wavelengths are 
described in $3.4. 

3.1. Dynamic torque and normal force measurements 
Previous measurements of the onset of the torsional flow instability typically have been 
limited to dynamic measurements of the total torque F and the total thrust, or normal 
force, B exerted on the stationary upper disk of a commercial parallel-plate rheometer 
as the lower disk is rotated at various speeds (Magda & Larson 1988; Steiert & Wolff 
1990; McKinley et al. 1991 a). Typical results are presented in figure 4 for the apparent 
first normal stress difference, N J t )  = 4S(t)/7cR2 measured in the 0.20 wt % PIB Boger 
fluid during the start-up of steady shear flow in a Rheometrics RMS-800 Mechanical 
Spectrometer. The sensitive dependence of the instability on the angular rotation rate 
52 between the plates is clearly observed. In each experiment, a fresh fluid sample is 
used, the rotation rate is increased, and the aspect ratio R / H  between the plates is 
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FIGURE 4. Transient response of the apparent first normal stress difference of the 0.20 wt % PIB fluid 
in a parallel plate rheometer: (a) initial overshoot and (b) growth of the instability as a function of 
Deborah number for a constant Weissenberg number We. 

decreased proportionately, such that the rim shear-rate and thus the Weissenberg 
number of the flow remains fixed. At short times, N,, grows quadratically, passes 
through a local maximum and then decreases towards a steady asymptotic value, as 
shown in figure 4(a). The initial transients superpose for all experiments performed at 
the same shear rate (or Weissenberg number), regardless of the rotation rate or 
Deborah number of the flow, as expected from the fundamental rheological premise 
that the material properties of a simple fluid are a unique function of the local 
deformation rate. For low values of the rotation rate, the first normal stress difference 
smoothly asymptotes to the expected steady-state value and subsequently remains 
constant at all future times. However, as the rotation rate is increased beyond a critical 
value of Qcrit = 3.90 rad s-', the normal stress exhibits a rapid increase above the 
expected steady-state value to a final time-dependent state. We show in $3.2 that these 
complex aperiodic fluctuations correspond to the onset and nonlinear evolution of a 
non-axisymmetric secondary flow between the plates. The magnitude of this transient 
increase in the normal stress Nlfl becomes larger, and the induction time for onset of 
the instability becomes progressively shorter as the rotation rate and Deborah number 
are increased. Similar behaviour is observed in the torque exerted by the fluid on the 
plate. In our earlier work (McKinley et al. 1991 a) a series of such measurements was 
used to show that the initial growth in the stresses is exponential in time, that there is 
hysteresis in the flow and thus that the instability is subcritical in rotation rate. 
However, because the measured thrust and torque correspond to integrated values of 
the actual stresses acting on the plate at each point, it is not possible to deduce 
information about the spatial form of the instability. We do not pursue such 
measurements further in the current work. 
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FIGURE 5.  Onset and growth of the purely elastic instability observed in the torsional flow of the 
0.31 wt % PIB fluid between coaxial parallel disks with R / H  = 20: (a) flow appears stable shortly 
after the Deborah number is increased to De, = 5.99 at f = 5:OO:OO (min:s:frame); (b) after an 
induction time of 90 s, the spatial structure of the secondary flow becomes visible; (c-d) outward- 
travelling non-axisymmetric secondary flow consisting of a single spiral vortex; (e)  nonlinear mode 
interaction; cf) ultimate fully nonlinear state. 

3.2. Non-axisymmetric disturbances of spiral ,form 

A series of observations depicting the evolution of the kinematics in the torsional flow 
were made using the 0.31 wt YO fluid with a fixed plate separation of H = 2.00 mm, 
corresponding to an aspect ratio of R / H  = 20. The series of grey-scale images shown 
in figure 5 were obtained using the video-imaging system described in $2.1 and depict 
the spatial and temporal evolution of the flow at a fixed rotation rate as it progresses 
from the stable base flow (a), through a well-defined spatially periodic spiral structure 
( b d )  before ultimately developing into a nonlinear state with many modes present 
(e-f). A steady rotational flow is initially established between the plates at a rotation 
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FIGURE 6. (a) Raw image of the flow instability and (h) enhanced image showing the spiral 
structure of secondary flow. De, = 5.99, Re = 0.032. 

rate below the critical value QCrit and the flow is observed for 5 min or more to ensure 
that it is stable; this corresponds to the intensity of the light reflected by the seed 
particles being uniform across the disk. At time t^ = 5 : 00 : 00 (min : s : frame), the 
rotation rate is incremented to a slightly supercritical value, corresponding to 
De, = 5.99. The flow field shown in figure 5(a) is already unstable, and measurements 
of the torque and normal force on the disks indicate that the initially small changes in 
the stresses arising from the secondary flow are growing exponentially. After 90 s, the 
secondary flow has grown in intensity sufficiently that a faint spiral structure can be 
discerned in figure 5 (b) near the centre of the disk. The strength of the secondary flow 
continues to increase and after another 60 s, a well-defined spiral secondary flow is 
clearly visible in figure S(c) .  Direct observation of the videotape clearly shows that 
these spiral vortices travel steadily outwards across the disk but remain confined to a 
narrow annular ring. The secondary flow structure shown in figure 5 (d) was observed 
0.60 s (18 video frames) after figure 5(c), at which time the vortices have moved 
outward by about half their wavelength. Quantitative measurements of the wavelength, 
wavespeed and azimuthal structure characterizing this instability are presented below. 
At longer times nonlinear interactions become important, and the periodic spatial 
structure of the secondary flow begins to become less well-defined, as shown in figure 
5(e). Dynamic measurements indicate that the increases in the forces exerted on the 
plates owing to the secondary flow begin to saturate at this time. Ultimately, the 
secondary flow becomes highly nonlinear with a wide spectrum of spatial structure 
present, as shown in figure 5(f). This non-axisymmetric time-dependent flow will 
persist until either the torsional motion is completely stopped, or the rotation rate is 
reduced below a second, lower critical value for return to the steady-state torsional 
flow. Some evidence of polymer degradation is observed after long periods in the 
unstable state, as discussed by McKinley et al. (1991 a). 

In order to quantify the secondary flow, it is necessary to enhance the visibility of 
the structures observed in the sequences of video images, such as those shown in figure 
5. Typical raw and postprocessed images are presented in figure 6 after application of 
the image processing operations described in $2.1. Correcting for the non-uniform 
background illumination increases the azimuthal visibility of the cellular structure 
around the entire disk, while adjusting the brightness and contrast expands the 
histogram of grey-scale values present to yield enhanced visual definition of the cells. 
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FIGURE 7. Data for the calculation of the radial wavelength of the secondary flow shown in figure 6. 
(a) Radial profile along 0 = - 1.00 rad; (b) Fourier spectrum of radial intensity fluctuations; A, = 
3.57f0.12 mm ( c )  average distance between the peaks in figure 10; = 3.66f0.53 mm, De = 5.99, 
We = 120. 

However, as is clear from an examination of figure 6, these operations do not 
compromise the fidelity of the spatial variation in the secondary flow structure. 

A Cartesian coordinate system is superimposed on the digitized images of the 
secondary flow with its origin at the centre of the disk, as shown in figure 6, and the 
cylindrical coordinate system required for definition of the spiral disturbance forms 
discussed in 92.2 is located with the line 0 = 0 aligned along the positive x-axis, and 
angles increasing in the direction of rotation of the upper plate. For all the 
experimental results presented here, H increases in the clockwise direction. The radial 
structure of the instability is determined by measuring grey-scale variations in the 
intensity of the light reflected by the seeding particles in the flow along any radial line 
passing through the origin, as demonstrated in figure 7(a) for the radial line 
corresponding to 8 = - 1.00 rad. In this profile and all others presented in this work, 
the negative radial coordinates indicated on the abscissa indicate distances along the 
radial line given by extending 6' --f H + x rad. 

The radial wavelength of the secondary flow can be calculated from such profiles in 
a number of ways. A Fourier transform of the intensity profile yields the power 
spectrum shown in figure 7(b) and the radial wavelength is determined as & = 

3.57 _+ 0.12 mm, corresponding to a dimensionless radial wavenumber of a = 
3.52 f 0.12. Alternatively, the radial separation between each pair of adjacent peaks in 
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FIGURE 8. Temporal evolution of radial intensity profiles along a fixed line of 0 = - 1.00 rad. The 
scale is vertically offset for each profile to show the movement of the cells. The line 0 = 0 is along the 
line y = 0, x > 0 in figure 6. The timescale is indicated in min:s. 

FIGURE 9. Positions of the peaks measured from the profiles of figure 8 as a function of elapsed 
time. The wavespeed is calculated as 3.18 & 0.27 mm s-l. 

the intensity profile is calculated as a function of the angular position as shown in figure 
7(c). From such measurements, the radial wavelength is found to be almost constant 
at different azimuthal positions with an average value and standard deviation 
determined from figure 7(c) as A, = 3.66f0.53 mm. 

The temporal evolution of the flow is determined unambiguously from a sequence 
of radial intensity profiles along a line of constant 8, as shown in figure 8 for the same 
angular position of 8 = - 1 .OO rad. The elapsed times given in figure 8 are the same as 
those in figure 5, and the intensity of each profile has been vertically offset for clarity. 
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These profiles clearly show the travelling-wave structure of the secondary flow. At any 
given instant in time, the disturbance appears radially periodic and the intensity of the 
secondary flow passes through a maximum with increasing r̂ . The centre of each vortex 
moves radially outward with time; the growth and ultimate decay of the disturbance 
can be followed by following the location of a particular crest as a function of time. The 
smallest dimensionless radius at which an intensity peak can be detected is denoted as 
R:, and the largest radius at which the peaks are still distinguishable is denoted as R,*. 
The irregular fluctuations in the baseline intensity near the centre of the disk are caused 
by an imperfect match between the background reference image and each successive 
image of the instability. These fluctuations are present even between successive images 
of the uniform base flow at subcritical rotation rates and typically arise because of 
small inhomogeneities in the flow, such as minute air bubbles, which are difficult to 
eliminate and which migrate to the region of low shear near the centre of the disks. 

The radial position of each successive peak in the intensity profiles shown in figure 
8 is determined for each timestep, and is replotted in figure 9 as a function of time. 
Linear regression through each series of points yields the wavespeed of the instability. 
The radial component of the wavespeed is determined as 6, = 3.18k0.27 mm s-l, 
equivalent to a dimensionless value of c, = 0.23 k0.02. 

It is immediately apparent from figure 7 ( a )  that the secondary flow is non- 
axisymmetric, because the peaks in the intensity profiles are located at different radial 
positions on either side of the origin. However, from closer consideration of (4) and 
figure 2, it is clear that this single profile can only be used to determine that the 
disturbance, if of spiral form, does not correspond to an even value of the integer spiral 
number m. In order to precisely determine the non-axisymmetric structure of the 
instability, similar measurements of the radial structure are required across the disk at 
different angular positions. As previously noted, the spiral number m only appears in 
(4) in the product m/a. Analysis of the data proceeds by selecting a trial value of m, 
and combining this with an initial guess for the value of a taken from the independent 
measurements shown in figure 7. Linear regression of the experimental data with (4) 
then yields best-fit values of 01-1 and 8, for a given value of m. Selection of the 
Archimedean spiral which most closely describes the overall spatial form of the flow 
is then based on the data regression which results in the highest correlation coefficient. 
For the flow of the 0.31 wt % fluid between parallel plates with an aspect ratio of 
R / H  = 20, the spatial structure of the secondary flow is best described by an outwardly 
travelling spiral of positive angle (m = 1 )  with a dimensionless radial wavenumber 
a = 3.64. Figure 10(a) shows the positions of the intensity maxima of the digitized 
image superimposed on a raw image of the secondary flow. Figure 10(b) shows the 
same data as figure lO(a), but with the spiral curve representing the instability 
‘unwrapped’ in the @-direction to demonstrate more clearly how well this form of the 
disturbance can describe the experimentally observed non-axisymmetric flow. For 
m > 1 ,  there would be m different curves corresponding to m intertwined spiral 
vortices, each offset by an angular displacement of 27c/m. 

The quantitative values of the wavespeed, wavelength and azimuthal structure of the 
instability also compare well with the linear stability analysis of Oztekin & Brown 
(1993). If the apparent relaxation time of the fluid is evaluated at the local shear rate 
of i, = 16 s-l corresponding to the onset radius RT, then the local shear-rate-dependent 
Deborah number is De(i,) = 2.8. At this Deborah number, the most unstable mode is 
predicted by Oztekin & Brown to be a non-axisymmetric disturbance with m = 1 ,  a 
wavespeed of c, = 0.24 and a wavenumber a = 3.13. 

Although the experimentally observed secondary flow consists of spiral vortices 
7-2 
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FIGURE 10. (a) Positions of the peaks determined from intensity profiles at different azimuthal 
positions superimposed on a video image of the flow. (b) Positions of the peaks with the best fit of 
equation (4) to these positions with rn = 1, oi = 1.80 mm-' and 0, = 0.435 rad. 

which propagate radially outwards, it should be noted that they do not initiate at the 
centre of the disks nor do they travel completely out of the edge of the fixtures. Rather, 
the vortices start at a finite radius, grow and then decay to zero amplitude at some 
second larger radial position, and are only visible for radial positions in the range 
4.2 mm < i < 23.2 mm, corresponding to dimensionless positions of 2.1 < r < 11.6. 
This is in sharp contrast to the predictions of the linear stability analysis for an 
Oldroyd-B fluid, which predicts that the torsional flow is linearly unstable to spiral 
disturbances of the same form as observed here for all radii greater than a single critical 
radius R* = R,*,,,. An explanation of this difference is presented in 54.2 where an 
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P R/" Deoerzt Y n  [s-ll & [mml RT R,* a cr rn 
0.59 20.0 5.99 151 3.45 2.1 11.6 3.64 0.23 1 
0.59 11.4 6.35 91 5.94 3.3 11.2 3.70 0.23 0 
0.84 20.0 5.85 94 3.06 1.1 8.8 4.11 0.21 2 
0.84 11.4 6.18 5 1  5.46 2.7 9.5 4.03 0.21 1 

TABLE 2. Critical conditions for the onset of the rotational flow instability for two different 
viscoelastic PIB/PB/C14 test fluids. 

energy analysis for the shear-thinning constitutive model describing the fluid shows 
that the onset radius observed in figure 5 corresponds to the point at which the radial 
gradients in the normal stresses coupled to the curvilinear streamlines lead to growth 
of perturbations in the velocity field. These disturbances subsequently decay beyond a 
second critical radius owing to shear-thinning of the first normal stress difference, 
which reduces the relative importance of the elastic effects in the flow. 

3.3. EfSect of aspect ratio and fluid rheology 
The linear stability analysis of Oztekin & Brown for the Oldroyd-B fluid indicated that 
the spatial form of the instability scaled with the gap separation H between the parallel 
plates and that the loci of the neutral stability curves were sensitive functions of the 
dimensionless solvent viscosity ratio /3. Sets of experiments similar to those described 
in $3.2 have been performed for the two different PIB Boger fluids described in $2.3 
using two different representative aspect ratios. The results from these experiments are 
summarized in table 2. The two fluids are differentiated in table 2 and the subsequent 
text by their respective values of the solvent viscosity ratio, which are p = 0.59 for the 
fluid containing 0.31 wt % PIB, and p = 0.84 for the 0.20 wt Yo fluid. 

In each fluid, enlarging the separation between the plates and decreasing the aspect 
ratio R/H results in a small increase in the critical Deborah number required for onset 
of the elastic instability. However, for the smaller aspect ratio of R / H  = 11.4, the shear 
rate at the edge of the disk, and thus the Weissenberg number at the onset of the flow 
instability, is actually lower. This is in good agreement with our earlier experimental 
and theoretical findings. For a larger gap, the local shear rate at any radial position 
across the plates at onset is lower and shear-thinning effects are less important. 
Consequently, the spatial extent of the secondary flow extends almost completely out 
to the edge of the disks. The dimensional wavelength and wavespeed both increase as 
the gap is increased; however, the dimensionless wavenumber a (scaled with the gap 
H) remains almost unchanged, as expected from the analysis of Oztekin & Brown. The 
wavespeed also scales well with gap size, and is in excellent agreement with the value 
predicted for the Oldroyd-B model using the shear-rate-dependent relaxation time. 

For the /3 = 0.59 fluid, an axisymmetric instability consisting of concentric vortices 
which travel radially outwards across the disk is observed for an aspect ratio of 
R/H = 11.4. Although Oztekin & Brown predict that the m = 1 mode should still be 
the most unstable mode at these conditions, the spacing in the stability curves for 
different m is very small, and the m = 0 mode is just slightly more stable at this De. The 
linear stability analysis yields neutral stability curves along which the temporal growth 
rate of the instability is zero and does not predict which finite-amplitude states will be 
observed at supercritical conditions. Such results must be found from a nonlinear 
analysis. 

The Deborah number at the onset of the instability appears to increase slightly in the 
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second experiment, but in fact both values are overpredictions of the true critical 
Deborah number. Very long induction times of greater than 1000 s are common for 
onset of the elastic instability very close to the critical rotation rate (Jackson et al. 1984; 
Magda & Larson 1988 ; McKinley et al. 1991 a). However, to perform such experiments 
requires careful isolation of the apparatus from external perturbations, and effects such 
as viscous heating in the fluid, or long term temperature fluctuations in the laboratory. 
In our experiments we have limited observation times at each rotation rate to about 
300 s and after a given De, was determined to be stable for this period of time, the 
motor speed was increased in steps of 652 = 0.52 rad s-l, which corresponds to finite 
increments in De, of 0.42 and 0.65 for the p = 0.59 and ,!3 = 0.84 fluids, respectively. 

The predicted onset radius for the /3 = 0.59 fluid at De, = 6.0 is RT = 2.2, which is 
in good agreement with the experimental results. The value of RT is defined as the 
radius at which the instability begins to grow; however, because only cells that have 
already grown to a finite amplitude large enough to produce a discernible peak in the 
radial intensity profiles (see figure 8) can be detected, the values of RT in table 2 will 
necessarily tend to overpredict the true onset radius. 

The most important difference between the experimental results and the predictions 
of Oztekin & Brown (1993) is that the Oldroyd-B model predicts that the flow should 
be unstable for all dimensionless radii greater than RT, whereas there is an 
experimentally observed position R: beyond which the flow remains stable. Although 
the critical radius RT for onset of the instability is predicted well for De, = 6, the 
analysis using the Oldroyd-B model predicts that the critical radius increases 
monotonically as the rotation rate is decreased. There should therefore be a larger 
value of R* at which secondary flow is observed experimentally for Deborah numbers 
smaller than De, = 6. As long as the value of the critical dimensionless radius RT is less 
than the finite aspect ratio R / H  of the experimental apparatus, the instability should 
be observed from RT outwards to the edge of the disk, and as De, is increased, the 
annular region of unsteady flow should move inwards. For example, for De, - 1, the 
analysis for the Oldroyd-B model with p = 0.59 predicts that the flow will be unstable 
with m = 3 at RT = 19, whereas for De, - 3, m = 1 is the most unstable mode for all 
dimensionless radii R* 2 2.2. In contrast, experiments show that the flow remains 
stable at all radii across the disk for all rotation rates below the critical rotation rate 
corresponding to De, = 6.35, when the cells form between RT and R,*. As shown in 94, 
this qualitative inconsistency with the linear analysis can be alleviated by considering 
a more realistic constitutive equation that includes shear-thinning of the first normal 
stress coefficient. 

Furthermore, the linear stability analysis predicts that multiple spiral modes should 
be present in the secondary flow, whereas it is clear from our observations that only 
a single mode is observed at short times. For De(y) = 3, the m = 1 mode is predicted 
to be the most unstable in the sense that it has the smallest critical radius of RT = 2.2. 
However, the modes with m = 0 and m = 2 are both unstable at the slightly larger 
radius of RT = 2.7. The neutral stability curves yield no information about the 
temporal growth rates of the different modes, or the amplitudes of the disturbances, 
and therefore no means of determining which mode should be selected in an 
experiment. 

For the p = 0.84 fluid, the onset of the instability was again observed at De, z 6 for 
both aspect ratios, and the shear-rate-dependent Deborah number based on the shear 
rate at RT was De(p) z 3, as observed for the p = 0.59 fluid. The analysis for the 
Oldroyd-B model predicts that for a given De,, the critical radius RT should be greater 
for the ,8 = 0.84 fluid, whereas the observed value of RT is slightly smaller for the /3 = 
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FIGURE 11. Secondary flow (a)  for a fluid with viscosity ratio /3 = 0.84 and aspect ratio R / H  = 20 at 
flow conditions De, = 5.85 and Re = 0.007 shows two nested spiral vortices, rn = 2.  Calculation of 
the wavelength of the disturbance along the line 17 = + 1.57 rad(b-c) gives A, = 3.41 f0.29 mm. 

0.84 fluid than for the /3 = 0.59 fluid. The instability again extended across only a 
portion of the disk, and RZ was found to decrease for the p = 0.84 fluid. 

The secondary flow for the p = 0.84 fluid between parallel plates with an aspect ratio 
of R / H  = 20 was observed to have the form of two nested non-intersecting spirals, as 
shown in figure 1 1, whereas for R / H  = 11.4 a secondary flow with m = 1 was observed. 
Oztekin & Brown predict that the axisymmetric mode should be the most unstable for 
p = 0.84 and De, = 6, although m = 1 and m = 2 are the next most unstable modes. 
The wavenumber and wavespeed both scale with the gap size, with the wavenumber 
increasing and the wavespeed decreasing relative to the p = 0.59 fluid. 

3.4. Onset of nonlinear interactions 

The results presented in $§ 3.2 and 3.3 are for times shortly after the onset of the 
instability when the secondary flow consists only of a single spiral vortex which 
intensifies as it travels across the disks. At longer times, the temporal measurements of 
normal force shown in figure 4, and the video-images of the spatial form of the 
secondary flow shown in figure 5 indicate that the subcritical instability eventually 
saturates as slower growing modes become increasingly important and the flow enters 
a complex aperiodic state far from the base torsional flow. The beginnings of this 
transition can be seen in figure 12, which shows results from the experiments with 
p = 0.84 and R / H  = 11.4. The critical De, was exceeded at t" = 16 : 00 min, and figures 
12(a-c) show that initially a single spiral with m = 1 and = 5.27 mm is present which 
intensifies with time and travels radially outwards across the entire disk. However, at 
longer times this single spiral begins to split at intermediate radial positions, as shown 
in figures 12 (d-f). A single well-defined spatial wavelength is still discernible, but it is 
now much shorter than the single mode spiral structures present in the linearly unstable 
regime, and the characteristic wavenumber has approximately doubled to a: = 6.49. 
The primary mode is clearly still in evidence at other radial locations. Similar nonlinear 
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FIGURE 12. Transition to nonlinear state for /I = 0.84 and R / H  = 11.4 at flow condition De, = 6.18 
and Re = 0.009: (a-c) initial secondary flow has the form of a single spiral vortex with radial 
wavelength A, = 5.27 mm; (d-f> as the instability saturates, the cellular structure splits and the 
wavelength reduces to A, = 3.39 mm. 

mode interactions are observed for both fluids and all aspect ratios examined. An 
example of the final unsteady flow reached at long times is shown in figure 13, for the 
/3 = 0.59 fluid and R / H  = 11.4. The initial spiral mode was axisymmetric with rn = 0 
and a single well-defined radial wavelength of i, = 5.94 mm, and the steady torsional 
base flow remained stable for all radii less than r" = 14.7 mm. As the Fourier spectrum 
in figure I3  (c) shows, the secondary flow can no longer be characterized by a single 
wavelength. Although considerable power remains in disturbances with wavelengths 
close to i, = 6 mm, shorter wavelength modes also are present. Close examination of 
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FIGURE 13. Fully nonlinear flow state for ,8 = 0.59 and R / H  = 11.4 with multiple modes and 
wavelengths present after 48 s shearing at De, = 6.35 and R e  = 0.075. At short times the flow 
exhibited a single axisymmetric disturbance with rn = 0 and A, = 5.94 mm. 

the videotape and images such as figure 13 (a) reveal the presence of both positive angle 
(m > 0) and negative angle (m < 0) spirals with a wide range of radial wavelengths. 
These negative angle spirals have negative wavespeeds and move radially inward until 
the nonlinear time-dependent secondary flow extends across the entire disk. 

4. Linear stability analysis 
We consider a viscoelastic fluid contained between two parallel coaxial infinite disks 

separated by a distance H. The flow is driven by the rotation of the bottom plate and 
is described in the cylindrical coordinate system (f ,  8,2) with 2 = 0 positioned on the 
rotating disk (see figure 1). With inertial effects neglected by setting the Reynolds 
number to zero, the equations governing mass and momentum conservation are 
V . ti = 0 and V - 2 - Vp = 0, where ti is the velocity vector, 4 is the extra stress tensor, 
and @ is the pressure. The polymeric contribution to the extra stress tensor is given 
by (6) and the total extra stress tensor 4 is decomposed as 4 = g+ys+, where 
+ = (Vti)' + Vti is the dimensional rate-of-strain tensor and ys is the solvent viscosity. 
The no-slip and no-penetration boundary conditions on the velocity field at the upper 
and lower plates are : tiT = (0, B , 0 )  at 2 = 0 and tiT = (0,0, 0) at 2 = H. The velocity 
field describing the steady-state viscometric flow is given by = [0, a?( 1 -z"/H),  01. 
As discussed above, the Chilcott-Rallison constitutive equation is used to describe 
the Boger fluids used in the experiments. For the Chilcott-Rallison model the 
corresponding stress and pressure field, 3 = go and @ = fro, are given in component 
form as So,, = Sors = So,, = So,, = 0; SoHz = - y p  O f / H .  The value of the hoop stress 
$,,, is given by 

(7) 

and the pressure is computed as @, = j(&oss/?) dr. 

s =--- y p  L2 [ - 1 + (1 + 8(h, 52)2(?/H)2 (L2 - 3)/L4)$ 
2 4  

nos 
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The linear stability analysis for the Chilcott-Rallison model is similar to the 
presentation by Oztekin & Brown (1993). Equations governing the evolution of small 
normal mode disturbances applied to the viscometric base flow are formed for 
dimensionless variables scaled with (H,  W1, HQ, voQ) for (length, time, velocity, 
stress), respectively. We restrict the analysis to disturbances that are radially localized 
in r .  The spatial dependence of each disturbance equation can be separated, if the 
disturbance is written in the Fourier form of (1) and the velocity, pressure, and stress 
fields are given as 

0 
(1 -z: 

0 

PO 
0 
0 
0 

SO,, 
SO,, 
0 

+ 

where so,, - ~ p r , s o o o  $ooo/(y?fi),Po P o / ( v o  P T s / v o , P p  (1 -PI, ( c r ,  60, 
are the dimensionless (radial, azimuthal, axial) components of the velocity field, p" 
is the pressure, ($,, g,,, $,, goo, $,,, $,,) are the components of the contribution to the 
polymeric stress tensor, (U,  V ,  W )  are the components of the amplitude of the 
disturbance to the velocity field, p is the amplitude of the disturbance to the pressure, 
and (S,,, Sro, S,,, Soo, So,, S,,) are the amplitudes of the disturbances to the polymer 
contribution to the extra stress. As discussed above, the Deborah number is defined in 
terms of the time constant A, as De, = A,Q. Here 01 is the dimensionless radial 
wavenumber of the disturbance, m is an integer (which can be positive, zero, or 
negative), and CT is the dimensionless temporal eigenvalue (which can be complex). 
Substituting (8) into the momentum conservation and constitutive equations and 
subsequently eliminating the pressure using the continuity equation yields 

m(-25+ 1/R*) 
D v- D u- pm,, + DSro 

-D4+ 2K2- -  D ' - K ~  w+- 2P5m [ ( ;*') ] R*2 R*3 R" 

(it- m2/R*) im(D2 + K') 
DS*o+ R* S,, + DS,, = 0, (9a) R* 

+ i5(Dz + K') S,, - 

2Pm' 201Pm 
R*3 R"2 (D2-K2-I/R*2)U+- V+- U -  a&., -k (- m2 + 015- ia/R*) S,, 

im m(-i/R*+a) 
R" So, - iaDS,, + DS,, = 0, (9 b) R* 

+ - DS,, - 

where 5 = 01 - i/R* and K~ e - 016- mZ/R*'. Here D = d/dz and w(z) = icr. V(z) - 
imU(z)/R* = w(z)- V(z)/R*,  where w(z) is the amplitude of the disturbances to the 
vertical vorticity and w(z)  approximates the amplitude of the disturbance to the vertical 
vorticity for large values of R*. In this form R* = !*/H is the dimensionless radial 
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location for the localized disturbance. The linearized components of the constitutive 
equations are 

P, S,, - 2iaPU = 0, (10a> 

(lob) 

(10c) 

P, S,, + DeR*S,, +P,( - 2iaP, DeR* -2im/R* + DeR* D) U+P,(l/R* -ia) V = 0, 

Pl S,, + p,(imDe - D) U -  iaPP W = 0, 

Pl So,+ (P, + 2DeR*S,,, &,)(ST, + So,+ S,,) + 2DeR*So, + ({* L+-- 7;dF)u 
+,!3,(-4imDe2R*-2im/R*+2DeR*D)V = 0, (10d) 

De dSo,, 
f o  dr 

P, S,, + P,( S,, + So, + S,J + DeR*S,, + P,( - imDe - D) V-  - ~ U 

+p,(-2imDe2R*-im/R*-DeR*D) W = 0, (1Oe) 

Pl S,, + P,(2imDe - 2D) W = 0, (10f) 

where De = De,/f,, 4 = [l +Decr+imDe(l -z)], Pz = -De6,(g+im/R*)So,,/f,, 
f ,  = 6,+6,S,,,, is the basic state value of the spring nonlinearity f in the 
Chilcott-Rallison model with 6, s L2/(L2 - 3), 6, = De,/[~,(Lz - 3)] and 
6, = -De~(L2-3)/[P,(L2+DeoS,,,o)2]. It is worth noting in (lob)-(lOf) that the finite 
extensibility of the dumb-bells in the shear flow implied byf, > 1 serves to reduce the 
apparent Deborah number defined by De = Deo/f, that appears in the disturbance 
equations. We expect shear-thinning in the first normal stress coefficient to increase the 
critical value of the zero-shear-rate Deborah number for the onset of instability. The 
boundary conditions on the disturbance velocities are 

W(0) = DW(0) = ~ ( 0 )  = W(1) = DW(1) = ~ ( 1 )  = 0. (lla-f) 

The solution method involves approximation of the eigenvalue problem by the mixed 
Galerkin-Tau/Chebyshev method and numerical solution of the resulting generalized 
eigenvalue problem; details are given in the Appendix. 

The stability of the viscometric flow is characterized for given values of De, and m 
by neutral stability curves R* = R*(a) along which Re(a) = 0. These curves are 
determined by computing the growth rate g for fixed values of (a,m,De,,L) and 
several values of R* and using bisection to determine the critical value R*(a). These 
searches are carried out to one part in lo6. 

4.1. Results of the linear stability analysis 
The effects of shear-thinning on the onset of elastic instabilities for the viscoelastic 
flow between rotating infinite disks were explored by calculations for the axisymmetric 
mode (m = 0) and positive angle spirals (m > 0) for two specific solvent viscosity ratios 
of ,4 = 0.59 and 0.84 and for representative values of viscosity ratio in the range of 
0.30 < ,!3 < 0.90. The stability results are presented for Deborah numbers and 
extensibilities in the range 0 < De, < 8 and 10 < L < co, respectively. 

The calculations were first verified by comparing the results for L = 1000 with the 
earlier calculations by Oztekin & Brown (1993) for viscoelastic flow modelled by the 
Oldroyd-B constitutive equation ( L  +- co) between parallel rotating disks. The neutral 
stability curves R* = R*(a), the critical onset radius and radial wavenumber for 
positive and negative angle spirals differ by less than one part in 50, hence we only 
present stability results for positive angle spirals. As was the case for the Oldroyd-B 
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FIGURE 14. (a) The real and (b) the imaginary parts of the least stable axisymmetric (m = 0) and 
m = 1 and m = 2 non-axisymmetric eigenvalues as functions of the number of polynomials N in the 
expansion for De, = 2 and for R* = 10, p = 0.59, L = 50 and CL = 3. 

model (Oztekin & Brown 1993), the only significant difference between positive and 
negative angle spirals is found in the wave speed: positive angle spirals travel radially 
outward, whereas negative angle spirals travel radially inward. 

The accuracy of the mixed Galerkin-Tau/Chebyshev approximation for the 
eigenvalue problem was tested by checking the spectral convergence of the eigenvalues 
with the smallest real part. The real and imaginary parts of the least stable 
axisymmetric (m = 0) and non-axisymmetric (rn = 1 and m = 2) eigenvalues are 
plotted in figure 14 as a function of the number of polynomials in the expansions 
shown in (A 1) in the Appendix for De, = 2 and L = 50 and for the parameter value 
R* = 10, /3 = 0.59, and a = 3. For each value of m, both the real and imaginary parts 
of the eigenvalue converge for values of N as small as ten. With this method, the 
spectral convergence rate of non-axisymmetric modes is dramatically increased 
compared to the Galerkin/Chebyshev approximation used by Oztekin & Brown 
(1993). 

The neutral stability curves R* = R*(a) computed for axisymmetric (m = 0) and 
non-axisymmetric (m = 1) disturbances for /3 = 0.59 and several values of the dumb- 
bell extensibility L are shown in figure 15 for De, = 1 and De, = 5. The solid curve in 
each plot represents the neutral stability curve R* = R*(a) for the Oldroyd-B limit, 
L+ co. For the Oldroyd-B model, there is a critical value R* = R:,it(a,,it) at each 
Deborah number that corresponds to the minimum in the neutral stability curve 
R* = R*(a). For R* < R:rit(acrit) the viscometric flow is stable for all values of the 
radial wavenumber a, whereas for any R* > R:Tit(3crit) the flow is unstable to distur- 
bances in some range of a, as previously shown by Oztekin & Brown (1993). The shape 
of the neutral stability curves for the nonlinear Chilcott-Rallison model is funda- 
mentally different. These neutral stability curves form closed loops ;"as a result, there 
is a finite range of radii RTcrit(alcTit) < R* < R~crit(aZc,it) for which the viscometric 
base flow is unstable. For all radii outside this range, i.e. R* < RTcrit(aleTit) and 
R* > R&it(aZcrit), the steady flow is stable. The values RTcrit and RZcrit are, respectively, 
the minimum and maximum of the neutral stability curves R* = R*(a). As L decreases 
and shear-thinning of !PI(?) becomes increasingly important, the unstable region 
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FIGURE 15. The neutral stability curves R* = R(a, m) computed for the Chilcott-Rallison model with 
,8 = 0.59 and various values of L for (a) axisymmetric (m = 0) and (b) m = 1 non-axisymmetric 
disturbances with Deborah numbers of (i) De, = 1 and (ii) De, = 5. 

contained by R* becomes smaller and ultimately disappears completely below a critical 
value of L. Monotonically increasing De, reduces the critical radii R* = RXit(aCrit) for 
all curves, but also decreases the critical value of the extensibility L for which the flow 
is stable everywhere to both axisymmetric and non-axisymmetric disturbances. The 
critical value of the radial wavenumber changes little with De,. The most dangerous 
radial wavenumbers for the onset (alcrit) and for disappearance (azcrit) of the instability 
remain close to about a z 3 for both axisymmetric and non-axisymmetric disturbances; 
this wavenumber corresponds to disturbances with a wavelength of approximately 
twice the gap spacing. 

Finite extensibility has only a small stabilizing effect on the value of RT,,, compared 
to the value obtained for the Oldroyd-B model. For low shear rates, the 
Chilcott-Rallison ,. model predicts quadratic growth in the basic state values of hoop 
stress S,,,,; see (7). However, for dimensionless shear rates exceeding De, R* 3 
L2/(8(L2 - 3)); shear-thinning in the normal stress becomes appreciable and the neutral 
curves in figure 15 deviate significantly from the Oldroyd-B limit. Ultimately, for 
R* > R~crit(a2Crit) the shear-thinning reduces the gradient in the normal stress to the 
extent that the steady viscometric motion is restabilized. 

Contours of the eigenfunction corresponding to the disturbance in the axial velocity 
in the ( r ,  2)-plane between the plates are shown in figure 16 for one radial wavelength 
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FIGURE 16. Contours of the vertical velocity ti, of the disturbance calculated for the Chilcott-Rallison 
model (/? = 0.59, L = 50) in the (v,z)-plane. Plots are for (a) the axisymmetric disturbances (m = 0), 
De, = 2, R* = 5.85 and a = 3 and (b) m = 1 non-axisymmetric disturbances, De, = 2, R* = 9.2 and 
n = 3 .  

of the axisymmetric (m = 0) and non-axisymmetric (rn = 1) disturbance flows, as 
computed for the critical values R* = RTerit(alcrit) with De, = 2, L = 50 and /I = 0.59. 
The vertical velocity of the axisymmetric disturbances is symmetric about the midplane 
( z  = O S ) ,  has a maximum amplitude at the midplane and is zero at each disk (z = 0, 
z = 1). The non-axisymmetric velocity eigenfunction is not symmetric about the 
midplane, but is skewed in the radial direction and has maximum intensity closer to the 
stationary disks. Although, it is not plotted here, the axial eigenfunction for the 
m = - 1 non-axisymmetric mode is skewed in the opposite radial direction to the 
eigenfunction for the positive angle spirals. These eigenfunctions have very similar 
forms to those computed by Oztekin & Brown (1993) for the Oldroyd-B constitutive 
model. 
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FIGURE 17. The critical radius RX,, for the onset of the axisymmetric instability as a function of 

De, for a viscosity ratio of (a) /3 = 0.90 and (b)  p =  0.59. 

The travelling-wave form of the disturbance and the shape of the neutral stability 
curves gives a picture of the instability that is consistent with our experimental 
observations. For a parallel plate apparatus with given aspect ratio, R/H,  the 
instability is expected to start when the Deborah number is increased beyond a finite 
critical value that depends on the rheology of the fluid (given by the parameters /3 and 
L). For De, above this value, travelling spiral vortices are expected to emanate from 
the critical dimensionless radius R* = R~,,,,(a, move radially outward and 
diminish beyond a second critical radius R* = R~cri t (a2cr i t ) .  The critical value of the 
radius R* = R:,it(aerit) for the onset of the axisymmetric instability is plotted in figure 
17 for the viscosity ratios of p = 0.59 and p = 0.90 and several values of L. In the 
Oldroyd-B limit, L + co, a finite value of the critical onset radius is predicted for any 
non-zero value of Deborah number. However, for the shear-thinning model (finite 
values of L)  there exists a critical value of Deborah number DeOcrit, below which the 
viscometric motion is stable everywhere for all dimensionless radii. The base flow is 
unstable in the finite range of dimensionless radii R1*,,it(al,,it) < R* < R~crit(apcrit) 
for De, > DeoCr,,. 

For all values of the viscosity ratio p, the value of DeOcTi, increases and the range 
of radii where the base flow is unstable shrinks as L is decreased and the shear-rate- 
dependence of the first normal stress coefficient becomes increasingly important. Note 
also that the predictions of the critical radii for the onset of instability RT,,,, are very 
similar for both the Oldroyd-B and the Chilcott-Rallison models and that the critical 
value of RlCri, predicted by the Chilcott-Rallison fluid for any value of L has a weak 
dependence on De,, as shown in figure 17. These features of the neutral stability 
diagram can be explained better by plots of the apparent Deborah number De = De,/f, 
as a function of dimensionless radius, as shown in figure 18 for /3 = 0.59, 1 < De, < 
8 and L = 50. The apparent Deborah number asymptotes to zero for all values of De, 
and any finite value of L owing to shear-thinning in the first normal stress coefficient. 
For L = 50, the difference in the apparent Deborah number for 3 < De, < 8 is very 
small for radii beyond R* M 20. This is consistent with the linear stability analysis for 
this fluid, which predicts the value of R:crit(azcrit) z 20, approximately independent of 
De,. However, for much smaller values of R* the shear-thinning of the normal stress 
is small and the apparent Deborah number is not reduced significantly below the zero- 
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FIGURE 18. The apparent Deborah number, De = De,/f,, as a function of R* for a viscosity ratio 
/3 = 0.59, 1 < De, < 8 and a dumb-bell extensibility of L = 50. 

shear value of De,. Therefore, the differences between the predictions of RTcrit for the 
Oldroyd-B and the Chilcott-Rallison models are small; this is seen in figure 17. 

The results in figure 17(b) show that no instability should be expected below a 
critical Deborah number De, E 6, for a fluid described by /? = 0.59 and L % 15. Beyond 
this rotation rate disturbances are expected to be radially localized to a thin annular 
ring. This prediction is in good qualitative agreement with the experimental results 
shown in table 2. A more detailed comparison between our linear stability calculations 
and observations is discussed in $5.  

The critical value of the radius R* = R,*,it(aerit;m) for /3 = 0.59 is plotted in figure 
19 for the most dangerous, the axisymmetric (m = 0), and the non-axisymmetric modes 
with m = 1 and m = 2. The solid curves in each plot denote the critical value of the 
radius for the most unstable modes in the range of m < 10. For the Oldroyd-B 
constitutive equation, the axisymmetric disturbance is never the most dangerous ; 
however, the difference in the critical radii between the axisymmetric and the m = 1 
and m = 2 non-axisymmetric modes is small, as shown in figure 19(a). The non- 
axisymmetric modes with m > 2 which become most unstable for De, < 2 are omitted 
for clarity. For finite values of L,  the critical radius RFcrit for the m = 1 mode is always 
the smallest while the critical radius Rtcrit is largest for the axisymmetric and m = 2 
modes. The differences in the critical radii are still small for all three modes, indicating 
that spiral vortices and the axisymmetric instability might all be seen simultaneously 
in the flow visualization experiments. Similarly, the critical value of the radius R* = 
R,*,it(a,,it; m) for /I = 0.84 is plotted in figure 20 for the axisymmetric (m = 0) and 
m = 1 and m = 2 non-axisymmetric modes. In addition to changing the relative 
ordering of the stability of each mode, note that increasing /? results in an overall 
increase in the stability of the flow; the neutral curves in figure 20 are all shifted to 
higher values of DeOcri, for any L. The axisymmetric disturbance is the most dangerous, 
but the critical radii of all modes are again very similar for all values of L. As was the 
case for /? = 0.59, the axisymmetric and non-axisymmetric instabilities may be difficult 
to distinguish in experiments. 
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FIGURE 19. The critical radius RZi, for the onset of the most dangerous, axisymmetric (m = 0), and 
non-axisymmetric (rn = 1 and m = 2) instabilities as a function of De,, for a viscosity ratio of p =  0.59 
and extensibilities of (a) L+ 00, (b) L = 100, (c) L = 50 and (d) L = 15. 

4.2. Disturbance-energy analysis 

The mechanism of the instability in the flow between the parallel rotating disks is 
most clearly seen from the disturbance-energy equation. The mechanical energy 
balance of the system is evaluated to determine the energy transfer between the mean 
flow and the disturbance flow, by a method similar to the one developed by Joo & 
Shaqfeh (1991, 1992, 1994) for analysing purely elastic instabilities of the Oldroyd-B 
model in the Taylor-Couette and Taylor-Dean flows. 

The energy analysis here is for a modified constitutive equation in which the terms 
proportional to the material derivation Df/Dt implicit in (6) are neglected. This 
model is used by Coates, Armstrong & Brown (1992) to calculate the steady-state 
viscoelastic flow through an axisymmetric contraction and is referred to as the 
modified Chilcott-Rallison (MCR) model. The dimensionless form of this constitutive 
equation is written as 

De 
S+AS, , ,  = (1 - 

f Y .  
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FIGURE 20. The critical radius R,*,, for the onset of the axisymmetric (m = 0) and non-axisymmetric 
(m = 1 and m = 2)  instabilities as a function of De, for a viscosity ratio of p =  0.84 and extensibilities 
of (a) L-t co, (b)  L = 100, (c)  L = 50 and ( d )  L = 20. 

This model predicts almost identical rheological response in steady flows to the full 
Chilcott-Rallison model, and the neglect of the Df /Dt  terms allows us to obtain 
valuable insight into the evolution of the disturbance-energy in the secondary flow 
through the analytical relations derived below. 

The critical value of the radius R* = R$it(acrit) for the onset of the instability of the 
axisymmetric disturbances computed using the full Chilcott-Rallison models (dashed 
curves) and the modified Chilcott-Rallison model (solid curves) are plotted in figure 21 
for p =  0.59 and for several values of the extensibility parameter L, which controls the 
shear-thinning in both models. The values of the critical radius RTcrit and the critical 
Deborah number DeOcri, are very similar for both models. The predictions of R&rit 
differ; the extra terms neglected in the MCR constitutive equation further stabilize the 
base flow when the fluid is highly shear-thinning. 

The mechanical energy equation is obtained by multiplying the linearized 
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FIGURE 21. The critical dimensionless radius or aspect ratio R* = R z i t ( ~ , , i t )  for the onset of the 
axisymmetric instability computed for ,8 = 0.59 as a function of the Deborah number. ---, 
Chilcott-Rallison model; -, modified Chilcott-Rallison model. 

disturbance momentum equation by the disturbance velocity and integrating over the 
periodic volume element V :  0 < r < 2 x / ~ ,  0 < B < 2n/m, 0 < z < 1. The result is 

de 
= Qvis + Q p u  + Q p s  + Q s t ,  d t  

where c p  is the total rate of energy created or dissipated by the disturbance polymeric 
stresses, and is written as 

e,=iDe (V-S) .udV.  s 
The individual contributions to (13) are identified as follows. The term 

Qvis = s (V2u)  - udV 

is the rate of viscous energy dissipation by the disturbance flow. The term Qpv is the 
rate of energy production due to the coupling between the base state polymeric stresses 
and the disturbance velocity field and is written as 

The term 

Qps = Den V - -( -u , .  V S  +(VuJT - S+S . Vu,) . udV s ;o 
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FIGURE 22. The terms (Quia, Qnv, Qps,  Qst, dt,/dt) in the energy analysis as a function of R* for CL = 

3, = 0.59 and De, = 2 computed for the Oldroyd-B model (L+ co) for (u) axisymmetric 
disturbance and (b) and rn = 1 non-axisymmetric disturbance, and for the modified Chilcott-Rallison 
model ( L  = 60) for (c) axisymmetric disturbance and ( d )  and m = 1 non-axisymmetric disturbance. 

is the rate of energy caused by the coupling between the base flow field and disturbance 
polymeric stresses. Finally 

Q,, = De, V - 6, tr (S)( -u, - VS,+(VU,)~ - S,+S, - Vu,) - u d V  (14e) 

is the rate of energy transfer between the base and disturbance flows due to the shear- 
thinning terms in the MCR model. Following the argument of Joo & Shaqfeh (1992) 
for the inertialess disturbance momentum equation leads to a second relation for the 
time rate of change of e p  given by 

s 

dc 
dt = b:[Vu: VudV, 

Since (Vu: Vu) is a positive definite quantity, the sign of de,/dt must indicate decay or 
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FIGURE 23. The total energy produced or dissipated by the axisymmetric disturbances as a 
function of R* for 1 6 De, 6 5 and for (a) L-. co and (b) L = 50. 

growth of the disturbances. To be more specific, energy is transferred from the mean 
flow to the disturbances (unstable configuration) or from disturbances to the mean flow 
(stable configuration) when de,/dt has positive or negative signs, respectively. 
Although an identical mechanical energy approach to (14a)-( 14e) can be obtained 
from the full Chilcott-Rallison model, a relationship of the form in (15) cannot be 
obtained because terms of the form Df/Dt enter the disturbance equations and prevent 
the development of a simple criterion for determining whether the base flow is stable 
or unstable. 

The terms in the energy equation for axisymmetric and (rn = 1) non-axisymmetric 
disturbances are plotted as a function of R* in figure 22 for De, = 2 and /3 = 0.59 for 
the Oldroyd-B model (L-. co) and for the MCR model with L = 60. As expected, the 
magnitude of each term in (1 3) for the axisymmetric and non-axisymmetric disturbance 
flow is reduced when shear-thinning in the elastic normal stress is introduced since 
f, > 1 ; however, the sign of each contribution remains unchanged. The terms due to 
the coupling between the base state polymeric stresses and the axisymmetric and non- 
axisymmetric disturbance flow (Qpv)  dissipate energy for both models. The energy 
production caused by the coupling between the base state velocity field and the 
disturbance polymeric stress (Qps )  is the primary instability mechanism for both 
axisymmetric and non-axisymmetric disturbances. The shear-thinning term (Q,,) 
results in additional energy dissipation for both axisymmetric and non-axisymmetric 
disturbances and becomes very small for R* % 1, as shown in figures 22(c) and 22(d).  
In the Oldroyd-B model, energy is produced by the axisymmetric and non-axisymmetric 
disturbances above the critical value of R* and the base flow remains unstable for 
R* > RZTt,. However, in the MCR model with L = 60, disturbance energy is produced 
by the axisymmetric disturbances (rn = 0) only for values of R* between R~cTit(alcrit) < 
R* < RZcrit(a2CTit). For non-axisymmetric disturbances with m = 1, the shear-thinning 
effects are strong enough for the base flow to remain stable at all radii for L = 60. In 
other words, for De, = 2, the rate of change of energy dissipation in the m = 1 non- 
axisymmetric disturbances is negative, as shown in figure 22 (d)  and the disturbance is 
damped everywhere. 

The radial variation in the rate of change of total energy produced or dissipated by 
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axisymmetric disturbances is plotted in figure 23 as a function of De for the Oldroyd- 
B model and the MCR model with L = 50. From figure 23(a) it is clear that the total 
disturbance energy rate increases and the flow becomes unstable at progressively 
smaller values of the radius R* = R:rit as De, increases for the Oldroyd-B model. The 
total rate of change of disturbance energy generation passes through a maximum and 
asymptotes to very small positive values for large values of R*, but never becomes 
negative again for R* > R&t for each value of De,. The power dissipated by the 
disturbance thus increases as it travels across the disk. In contrast, for the MCR model, 
the total energy produced by axisymmetric disturbances is reduced and de,/dt tends to 
a negative value for R* 9 1. 

5.  Discussion 
The evolution of the disturbances and the shape of the neutral stability diagrams 

predicted by the linear stability analysis of the nonlinear Chilcott-Rallison model are 
consistent with our experimental observations. Most importantly, we have shown that 
for a given solvent viscosity ratio /3 and finite dumb-bell extensibility L in the 
Chilcott-Rallison model, the elastic flow instability is limited to an annular ring near 
the centre of the disks. The instability develops at the critical radius R* = RTCrit(alcrit) 
and the secondary motion propagates radially outward as travelling spiral waves when 
the Deborah number exceeds the critical Deborah number for the onset of instability. 
This disturbance flow dies out at a second, larger critical radius R* = Ricrit(ancrit) and 
the flow becomes laminar, steady and purely azimuthal again. The secondary motions 
observed in the experiments for two different PIB/PB/C14 Boger fluids, with solvent 
viscosity ratios of /3 = 0.59 and /3 = 0.84, have the form of non-axisymmetric banded 
radial structures consisting of spiral vortices with a single well-defined wavelength. 

The flow visualization results presented in this work provide a much clearer picture 
of the spatio-temporal structure of this purely elastic torsional flow instability than was 
obtained from the earlier work of McKinley et al. (1991a). At rotation rates just 
beyond the critical value and for short times after the onset of instability, a three- 
dimensional, time-dependent secondary flow with the form of outwardly travelling 
Archimedean spirals is observed across an annular region of the disks. The spatial 
characteristics of this secondary flow scale well with the rotation rate and the axial 
separation between the disks, and the radial wavelength of the most unstable mode 
remains approximately the same across the entire annular region, consistent with the 
predictions of the linear stability analysis. However, the experimentally observed flow 
instability is subcritical in the rotation rate, and at longer times the well-defined spiral 
secondary flow evolves into a more complicated motion consisting of complex three- 
dimensional spiral structures with a broad distribution of wavelength which may 
extend across the entire disk (cf. figure 13). 

It should be noted that the travelling spiral structures observed in the experiments 
always have spiral numbers m 6 2, and thus have azimuthal wavenumbers (m/R*) 
which are much smaller than the radial wavenumber a. The spiral angle e defined in 
( 5 )  is thus typically small for this elastic instability. This is in sharp contrast to inertial 
instabilities near rotating disks where stationary spiral vortices with much higher spiral 
numbers of m = 32 are typically observed (Kobayashi, Kohama & Takamadate 1980). 
For the experimental conditions given in table 2, the typical spiral angle for the m = 1 
mode is only e - 5" and it is thus very difficult to distinguish whether the observed 
secondary motion is axisymmetric or not unless the full azimuthal planform of the 
disks is imaged. In addition, we find experimentally that the evolution of the spatial 
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FIGURE 24. The critical Deborah number De,,,,,, as a function of L for /3 = 0.59 and /3 = 0.84 
predicted by experiments (O), and stability analysis (-), for the most dangerous instability mode. 

and temporal characteristics of the disturbance are very different when large increments 
in the rotation rate 6 0  beyond the critical value OcTi, are applied. In particular, 
although we do not report on them here, we note that large step changes in D can result 
in the excitation of non-axisymmetric motions composed of inwardly travelling spiral 
waves which initiate at the outer edge of the geometry near the free surface and 
propagate radially inwards across the disks. Such modes can be readily identified in our 
earlier flow visualization studies (McKinley et al. 1991 a). In order to observe only the 
most unstable monodisperse disturbances discussed in this work, careful control over 
the increments in D are required. Nonlinear analysis of three-dimensional, time- 
dependent disturbances will be required to capture the more complex flows that arise 
when large disturbances are applied to the base flow. 

The agreement between experiment and theory for the prediction of the critical 
Deborah number is also greatly improved over the previous work of Oztekin & Brown 
(1993). In the limit L+ 00 (corresponding to the quasilinear Oldroyd-B model), the 
present analysis for infinite disks predicts that the critical value of De, monotonically 
approaches zero, and the torsional flow is always unstable for any finite De, at large 
enough radii. However, when the magnitude of shear-thinning in the first normal stress 
coefficient is increased (by decreasing the extensibility parameter L), the positive spatial 
gradients in the normal stresses which provide the driving force of the elastic instability 
are decreased and the critical value of De, is increased. For quantitative comparison, 
the experimental values (with appropriate error bounds) and the prediction from the 
linear stability analysis for the critical Deborah number De, = De,,,,(L) are shown in 
figure 24 for /3 = 0.59 and 0.84. The base flow remains stable everywhere for small 
values of De, for both values of /3 and all finite values of L. For a fixed viscosity ratio, 
the numerical value of the critical Deborah number is dependent on the exact value of 
the extensibility parameter L, which is determined experimentally from the best fit to 
the shear-rate-dependent first normal stress coefficient !PI(?) of the PIB/PB/C 14 
elastic liquids. The steep slopes of the numerically calculated curves in figure 24 for 
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L 6 50 signify how sensitive the critical Deborah number DeoCyi, is to changes in this 
extensibility parameter. This parameter can only be determined approximately from 
the steady-shear rheological data available (cf. figure 3) and some discrepancy between 
the data and computations in figure 24 is to be expected. In addition it should be noted 
that the experimental values of De,,,, determined from the growth of finite-amplitude 
perturbations to the base flow underpredict the linear stability calculations, as expected 
for a flow instability with a subcritical bifurcation structure. Both the experimental 
observations and the numerical calculations shown in figure 24 also indicate that the 
degree of stabilization by shear-thinning in the first normal stress coefficient is stronger 
for the higher solvent viscosity ratio. Similar stabilizing effects were demonstrated by 
Larson et al. (1994) using the K-BKZ model, and physically arise from the increased 
damping of the disturbance energy that is obtained when the relative contribution of 
the Newtonian solvent viscosity is increased. Numerical calculation is not continued 
for Deborah numbers beyond De, = 8 because the critical onset radius of the 
disturbances becomes very small. Since the present analysis is restricted to radially 
localized disturbances, it becomes unreliable when the onset radius of the instabilities 
becomes too small. 

The predictions from the linear stability analysis for the axisymmetric and the 
m = 1 and m = 2 spiral vortices show that the difference in the critical onset radii for 
these modes is very small for elastic fluids with p = 0.59 or /3 = 0.84 and for the 
most physically realistic values of the parameter L. It is therefore likely that both 
axisymmetric and non-axisymmetric vortices will be observed simultaneously in 
experiments. In fact, both our current flow visualization experiments and previous 
observations by McKinley et al. (1991 a) show the existence of several modes once the 
disturbances reach finite amplitude. Even close to the onset point of the instability, it 
is found that both the axisymmetric (m = 0) and the non-axisymmetric (m = 1, m = 2) 
spiral vortices can be observed in different experiments for slightly different values of 
the Deborah number, as indicated in table 2. For a solvent viscosity ratio of /3 = 0.59, 
the linear stability analysis predicts the m = 1 non-axisymmetric mode is always the 
most critical. However, for most values of the extensibility parameter L, the difference 
in the calculated onset radii of the axisymmetric and m = 1 and m = 2 spiral vortices 
are very small, as shown in figure 20. 

Both the axisymmetric and non-axisymmetric spiral waves observed in the 
experiments correspond to vortices with dimensional radial spacing of approximately 
twice the gap between the plates, in good agreement with the calculations. The 
experimentally measured radial spacing between two bright regions at a constant value 
of 0 corresponds to the wavelength 2n/a described by the normal mode representation 
of the disturbances (equation (4)). A similar representation has been used for the flow 
of Newtonian fluids over a rotating disk to compare the predictions for spiral angle 
between experiments and calculations of the inertial instability, which gives rise to 
Ekman spirals (Kobayashi et al. 1980; Malik 1986). Both the measured and the 
calculated wavenumbers of the axisymmetric and non-axisymmetric disturbances 
exhibit a weak dependence on De, and p: the measured wavenumbers for different 
values of De, and /3 are 3.64 6 cx d 4.1 1, and the calculated wavenumbers vary in the 
range 3 d CY 6 4 for a broad range of De, and p. The wavenumbers from both the 
experiments and the analysis increase slightly as /3 increases. 

The dimensionless radial wavespeed of the disturbances observed in the experiments 
remains approximately unchanged across the annular region of secondary flow, and is 
measured to be c, z 0.23 for both the axisymmetric mode and spiral vortices in both 
PIB/PB/C14 Boger fluids, as shown in table 2. The linear stability analysis for the 
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axisymmetric mode (rn = 0) predicts that the wavespeed of the disturbance depends on 
both the Deborah number and the radial location R* being considered. For a fixed 
value of De, = 5.5, the radial wavespeed is approximately 0.08 when instability starts 
at R* = RTcrit(alerit) and is about 0.25 when disturbances decay again at R* = 
R:erit(a2erit). These values are relatively insensitive to the azimuthal form of the 
disturbance. For example, the calculated values of the critical wavespeed are 0.07 and 
0.19 for spiral vortices with a winding number nz = 1. The agreement between the 
experiments and the analysis is therefore good at larger radii. In fact, the comparison 
of the wavespeeds predicted by experiments and analysis for the Oldroyd-B model is 
equally good if the calculations are carried out at Deborah numbers based on the 
‘apparent relaxation time’, De = De(V), evaluated at the local shear rate between the 
plates. The wavespeed of the axisymmetric instability for the Oldroyd-B fluid model 
with a solvent viscosity ratio p = 0.59 is calculated to be c, = 0.18 using a Deborah 
number corresponding to the local shear rate at R* = RTcrit(alcrit) = 3.5 (Oztekin & 
Brown 1993). 

The critical values of the radii R* = RTcTit(alcrit) and R* = R;crit(a2crit) defining the 
annular region of the unsteady flow determined from the experiments and stability 
calculations are shown in figures 25(a) and 25(b) for solvent viscosity ratios of /3 = 0.59 
and p =  0.84, respectively. The observations and the calculations with the Chilcott- 
Rallison constitutive model are in qualitative agreement. Both show that the 
axisymmetric and spiral vortices are confined to an annular region bounded by R:erit 
and R;erit ; however, the stability analysis consistently predicts lower values of these 
critical radii. Since our experimental observations of secondary motions are inherently 
finite in amplitude we expect them to result in an overestimation of RT; similarly, 
outwardly travelling disturbances of finite amplitude may be expected to decay more 
slowly than infinitesimal perturbations and the decay radius R: will thus also be 
overestimated by the experiments. Closer comparison between theory and experiment 
requires nonlinear calculations of the finite-amplitude states or the incorporation of a 
more complex constitutive model with a spectrum of time constants which better 
describes the steady and transient material functions of the elastic test fluids (cf. figure 
3). The systematic differences between the experimental measurements and the 
numerical predictions also may result from considering only radially localized 
disturbances. Since the disturbances are confined to a finite annular region for the 
Chilcott-Rallison model, the validity of this assumption is easier to justify than it is in 
the Oldroyd-B model for which the instabilities occur in an infinite domain. However, 
rigorous removal of this assumption requires consideration of the fully two- 
dimensional non-separable eigenvalue problem in the (Y, z)-plane for each spiral mode. 

Experiments spanning a wider range of aspect ratios (R/H) and solvent viscosity 
ratios (p) are desirable; however, the range of parameters experimentally attainable are 
constrained by a number of physical considerations. For disks with a given radius R, 
larger aspect ratios correspond to vortices of a smaller wavelength which are difficult to 
resolve spatially. Furthermore, for very small gap separations, the region of unsteady 
flow given by dimensionless radii in the range RTcrit < R* 6 Rzcrit would physically 
correspond to a very narrow annular ring close to the centre of the disk. The elastic 
instability will still be present, but the contribution of the secondary flow to integrated 
measurements of the torque and normal force on the plates will be negligible. On the 
other hand, for larger gap separations the surface tension of the fluid is insufficient to 
overcome centrifugal and gravitational body forces and the sample will be flung out of 
the gap between the plates. The range of viscosity ratios v, /vo physically realizable with 
Boger fluids also is limited. If the polymer concentration is increased in order to 
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FIGURE 25. The critical onset radius R* = Rc*,lt(ae,tt) of the most dangerous mode as a function of De, 
predicted by experiments (a), and stability analysis (-), for the viscosity ratios of (a) p = 0.59 and 
(b) p = 0.84. 

increase the relative contribution of r p  then the polymer solution crosses over from the 
dilute to the entangled regime, and stabilizing effects such as a non-zero value of the 
second normal stress coefficient Y2 and pronounced shear-thinning in the viscosity 
become dominant. This typically constrains the solvent contribution to be greater 
than /3 2 0.50. Reducing the polymeric contribution to the viscosity below T~ z 0 . 1 ~ ~  
leads experimentally to very dilute non-entangled solutions with short relaxation times, 
whereas the numerical stability calculations show that larger values of /3 result in 
increasing stabilization of the base circumferential flow (cf. figure 25). It thus becomes 
difficult experimentally to achieve sufficiently high rotation rates and/or Deborah 
numbers to observe this torsional flow instability. 

The results of the disturbance-energy analysis conclusively show that the instability 
mechanism for both axisymmetric and non-axisymmetric disturbances is similar for 
both a typical shear-rate-dependent nonlinear constitutive model and a simpler 
quasilinear model which predicts constant viscometric properties. The terms arising 
from the nonlinear coupling between the base state velocity field and the disturbance 
polymeric stresses control the onset of the purely elastic instability, and the rate of 
energy generated in these disturbances is reduced with increasing importance of shear- 
thinning in the extra hoop stress So,,. In the limit L-tco, a micromechanical 
description of the instability mechanism can be obtained by considering the infinitely 
extensible dumb-bells from which the Oldroyd-B constitutive equation is derived (Bird 
et al. 19876), and by using arguments similar to the ones described by Oztekin & 
Brown (1993) for viscoelastic flow between parallel rotating disks and by Larson et al. 
(1990) and by Joo & Shaqfeh (1992) for viscoelastic Taylor-Couette flow. The 
mechanism of the instability is associated with the disturbance and base state 
polymeric stresses and the velocity gradients in the z- and &directions, which couple 
through the curved streamlines of the base flow to create a perturbation in the hoop 
stress, SOH, that subsequently reinforces the disturbance. Joo & Shaqfeh (1994) have 
pointed out that the mechanisms for axisymmetric and non-axisymmetric instabilities 
in Taylor-Couette flows of the Oldroyd-B model differ slightly in the pathway that 
generates the disturbance hoop stress. The disturbance energy analysis presented here 
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shows that the instability mechanism for the more complex modified Chilcott-Rallison 
(MCR) model is very similar except that finite extensibility of the dumb-bells serves to 
reduce the magnitude of the destabilizing coupling between the base state kinematics 
and disturbance stresses and also gives rise to an additional dissipative contribution to 
the mechanical energy balance of the disturbance flow which restabilizes the purely 
circumferential torsional flow for large radii R* 9 1. 

Since the mechanism of this elastic instability is similar to that observed in the elastic 
Taylor-Couette and Taylor-Dean instabilities (Larson et al. 1990; Joo & Shaqfeh 
1994), it is not surprising that the spatio-temporal dynamics are also similar. In 
particular, these instabilities also have the form of periodic vortices with a single 
wavenumber for times shortly after onset, while at longer times nonlinear effects lead 
to a finer-scale structure. Our video-imaging results clearly show that non-axisymmetric 
modes are often the most unstable modes that are observed experimentally. It has been 
conjectured that the onset of similar non-axisymmetric modes explains the discrepancy 
between experimental and calculated critical Deborah numbers in the Taylor-Couette 
geometry (Larson et al. 1994; Avgousti & Beris 1993). 

Although the analysis predicts that the difference in the onset radius of the radially 
inward-travelling negative angle and outward-travelling positive angle spiral vortices 
is very small, only positive angle spirals are observed by flow visualization at the linear 
stage of the instability. This is probably due to the fact that negative angle spirals travel 
radially inwards to smaller radii where the analysis suggests the base flow is linearly 
stable to all disturbances of spiral form. Any small disturbances which can be 
represented in this form will therefore be damped so that their amplitudes are never 
large enough to be detected in the experiments. However, it is obvious from figures 5 (e)  
and 5 c f )  that negative angle spiral vortices are observed in the nonlinear motions 
observed at longer times. These structures propagate radially inward toward the centre 
of the disk and probably reflect back from the centre. The nonlinear interactions 
between these reflected waves and other travelling waves make the flow too complicated 
to decompose into discrete disturbance modes. 

The results of these experiments and the associated stability analysis clearly indicate 
that the instabilities described here are responsible for the anti-thixotropic transition 
seen in the parallel rotating-disk rheometer. The onset of flow instabilities such as those 
shown here have important implications to measurements of the rheological properties 
of elastic liquids using a parallel-plate rheometer. In particular, it is clear from figure 
5 that just beyond the critical Deborah number the time-dependent, three-dimensional 
secondary motion for a viscoelastic fluid with shear-rate-dependent elastic properties 
is confined to a narrow annular region near the centre of the geometry, and will thus 
be completely overlooked from direct observations of the free surface or meniscus 
shape. The same type of instability is also responsible for the similar flow transitions 
observed by us and other authors in a cone-and-plate rheometer. However, in this 
latter geometry, the viscometric shear flow between a conical disk and a flat plate is 
homogeneous, and thus the shear rate is constant everywhere across the disk. The 
secondary motion resulting from rotational flow instabilities therefore is not radially 
localized but extends throughout the sample for rotation rates beyond a critical 
Deborah number. Experimental and theoretical descriptions of the spatial and 
temporal characteristics of this instability will be reported in a later paper. 
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Appendix. Numerical solution 
Equations (9)-( 1 1 )  describe an eigenvalue problem for the growth rate g and the 

eigenfunction, composed of the axial velocity V(z), the vorticity w(z) and polymeric 
stress components as a function of the spatial wavenumbers (a,  m), the dimensionless 
radial distance R* and the parameters L, De, and p. This eigenvalue problem is solved 
by discretization using Chebyshev polynomials. 

The components of the eigenfunction are expanded in truncated series of Chebyshev 
polynomials. These expansions are simplified by transforming the computational 
domain 0 6 z 6 1 to < = 22 + 1, so that the new variable 6 satisfies - 1 6 < d + 1 .  The 
transformed eigenvalue problems is solved using the mixed Tau and Galerkin 
technique (Gottlieb & Orszag 1977; Zebib 1987), in which the highest derivatives of the 
components of the eigenfunction corresponding to the disturbances in the axial 
velocity and w(C), and the eigenfunctions corresponding to the disturbance polymeric 
stress components are approximated by truncated sums of Chebyshev polynomials of 
the form 

N 

= c  
i=o 

where is the ith Chebyshev polynomial and the coefficients A,! are computed as the 
solution of the algebraic eigenvalue problem. Representations of lower-order 
derivatives of velocity and w(C) are computed by integrating the terms of (A 1 )  related 
to the velocity and w(<) and using standard properties of Chebyshev polynomials. The 
integration constants are computed using the boundary conditions (1 1 a)-(1 I f ) .  
Representations of the higher-order derivatives of polymeric stress components 
entering (1 0 a)-( 1 O f )  are found by differentiation of the polynomial expansion of 
polymeric stress components in (A 1 ) .  The mixed Galerkin-Tau procedure reducgts the 
system of equations and boundary conditions to a generalized matrix eigenvalue 
problem of the form 

where cr is the temporal eigenvalue, x E ' W N + l )  are the components of the discretized 
eigenvector and the elements of the square matrices A and B each in %5(N+1)X8(N+1), 

depend on (a,  m, L, De,, R", p). Since the equations for axial velocity and w ( 0  do not 
involve the temporal eigenvalue CT, B has 2 x ( N + l )  rows of zeros and is therefore 
singular. The solution of (A 2) then will lead to 2 x ( N +  1) infinite eigenvalues. The 
method developed by Goussis & Pearlstein (1989) maps the infinite eigenvalues to one 
or more specified points in the complex plane without modifying the finite eigenvalues. 
The resulting eigenvalue problem is 

(A+nB)x = 0, (A 2) 

( E + a F ) x  = 0, (A 3) 

E = (H, GP)T, F = (B", P)T', (A 4) 

where E E %8(N+1)X8(N+1), and F E  %8(N+1)X8(N+1) are written as partitioned matrices 
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where  HE%^(^+^)^^(^^+^) and P E % ~ ( ~ + ~ ) ~ ~ ( ~ + ~ )  are the parts of the A matrix A = 

contains the non-zero parts of the B matrix, and G is a diagonal matrix of order 
2 x ( N +  1) with elements g,, = e, and the coefficients ct are arbitrary constants. The 
eigenvectors and eigenvalues of the algebraic eigenproblems, (A 3 ) ,  are computed using 
the algorithm available as DGVCCG in the IMSL library. 

(H, p)T, B (B*, O)T, 0 E SJ2(N+l)X8(x+l )  is the zero matrix, B* E %6(A'+1)X8(N+1) 
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